A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been cond...A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.展开更多
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power ...In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.展开更多
The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely cha...The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.展开更多
The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, o...The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.展开更多
Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radia...Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radiated intensity distributions of coherent combined Gaussian beam array are derived via Fraunhofer scalar diffraction model by utilizing representations of the cross-spectral density of the far field. Effects of beam array numbers and separate distances etc. on far field radiated profiles are shown and analyzed. A new conception named power in the bucket of the main lobe (PIMm) is advanced to measure the beam quality of combined beams. This evaluation method is useful for efficiently determining the peak irradiance and power in the bucket for single emitting apertures of general shape.展开更多
A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthwor...A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthworm-like locomotion. The silicone of bellow shape is laid over the outer surface of the micro-robot to reduce the affection of the viscoelastic properties of the intestine. Wireless power transfer and communication systems are employed to realize the non-cable locomotion of the mi-cro-robot. The prototype of the micro-robot is 13.5 mm in diameter and 108 mm in length. The experimental results show that the towing force for the micro-robot is about 0.8 N, which is much smaller than the maximum driving force 2.55 N of the linear actuator. The supplying power of the wireless power transfer system fulfills the needs of the micro-robot system and the mi-cro-robot can creep reliably in the large intestine of a pig and other contact environments.展开更多
An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the...An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and展开更多
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc...Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.展开更多
This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the...This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.展开更多
The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studie...The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studied.The results show that:(1)The heat transfer coefficient ratio is higher than that without tab,indicating that the mixing of mainstream and coolant jet provides a better coverage film on the cooling wall,but increases the local turbulence production which enhances the heat transfer coefficient;(2)When the ellipse-shaped tabs are located at the film hole outlet,there is a larger pressure drop with the ellipse tab relative to the no-tab case.Thus,the discharge coefficient with ellipse tab is lower than that without tab.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52071348 and 51979129)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20201006)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJA130001).
文摘A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.
基金supported by the National Basic Research Programof China (2011CB711102)the National Natural Science Foundation of China (10672017,11002045)
文摘In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
文摘The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.
文摘The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.
文摘Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radiated intensity distributions of coherent combined Gaussian beam array are derived via Fraunhofer scalar diffraction model by utilizing representations of the cross-spectral density of the far field. Effects of beam array numbers and separate distances etc. on far field radiated profiles are shown and analyzed. A new conception named power in the bucket of the main lobe (PIMm) is advanced to measure the beam quality of combined beams. This evaluation method is useful for efficiently determining the peak irradiance and power in the bucket for single emitting apertures of general shape.
基金Project (No. 2007AA04Z234) supported by the Hi-Tech Researchand Development Program (863) of China
文摘A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthworm-like locomotion. The silicone of bellow shape is laid over the outer surface of the micro-robot to reduce the affection of the viscoelastic properties of the intestine. Wireless power transfer and communication systems are employed to realize the non-cable locomotion of the mi-cro-robot. The prototype of the micro-robot is 13.5 mm in diameter and 108 mm in length. The experimental results show that the towing force for the micro-robot is about 0.8 N, which is much smaller than the maximum driving force 2.55 N of the linear actuator. The supplying power of the wireless power transfer system fulfills the needs of the micro-robot system and the mi-cro-robot can creep reliably in the large intestine of a pig and other contact environments.
文摘An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and
基金supported by the Key Project of Natural Science Fund of Shandong Province (ZR2011BZ008)the Marine Renewable Energy Special Fund Project from the State Oceanic Administration PRC (GHME2011GD04)+2 种基金the Scientific and Technology Development Plan Project of Shandong Province,China (2008GG10007003)the Key Laboratory of Submarine Geoscience and Exploring Technology of the Ministry of Education,Ocean University of China (Grant No. 2008-01)the Key Laboratory of Marine Environment & Ecology,Ministry of Education (Grant No. 2008010)
文摘Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.
文摘This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.
基金supported by the Research Program of the National Natural Science Foundation of China(51276088)
文摘The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studied.The results show that:(1)The heat transfer coefficient ratio is higher than that without tab,indicating that the mixing of mainstream and coolant jet provides a better coverage film on the cooling wall,but increases the local turbulence production which enhances the heat transfer coefficient;(2)When the ellipse-shaped tabs are located at the film hole outlet,there is a larger pressure drop with the ellipse tab relative to the no-tab case.Thus,the discharge coefficient with ellipse tab is lower than that without tab.