The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ...The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.展开更多
This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha p...This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha power transformed Weibull distribution.The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions,which are quite familiar in environmental investigations.Its hazard rate function can be decreasing,increasing,bathtub and upside-down then bathtub shaped.Diverse structural properties of the proposed model are acquired including quantile function,moments,entropies,order statistics,residual life and reversed failure rate function.The parameters of the distribution were estimated using the maximum likelihood function.The maximum likelihood method is employed to estimate the model parameters and the approximate confidence intervals are also computed.Via a simulation study,the performance of the point and interval estimates are compared using different criteria.Employing real lifetime data sets,we verify that the offered model furnishes a better fit than some other lifetime models including Weibull,gamma and alpha powerWeibull models.展开更多
Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy ...Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness.展开更多
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non...In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.展开更多
This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy s...This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.展开更多
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe...The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
The continuous monitoring of the machine is beneficial in improving its process reliability through reflected power function distribution.It is substantial for identifying and removing errors at the early stages of pr...The continuous monitoring of the machine is beneficial in improving its process reliability through reflected power function distribution.It is substantial for identifying and removing errors at the early stages of production that ultimately benefit the firms in cost-saving and quality improvement.The current study introduces control charts that help the manufacturing concerns to keep the production process in control.It presents an exponentially weighted moving average and extended exponentially weighted moving average and then compared their performance.The percentiles estimator and the modified maximum likelihood estimator are used to constructing the control charts.The findings suggest that an extended exponentially weighted moving average control chart based on the percentiles estimator performs better than exponentially weightedmoving average control charts based on the percentiles estimator and modified maximum likelihood estimator.Further,these results will help the firms in the early detection of errors that enhance the process reliability of the telecommunications and financing industry.展开更多
The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considere...The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.展开更多
基金supported by the National Natural Science Foundation of China(No.22075262)。
文摘The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha power transformed Weibull distribution.The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions,which are quite familiar in environmental investigations.Its hazard rate function can be decreasing,increasing,bathtub and upside-down then bathtub shaped.Diverse structural properties of the proposed model are acquired including quantile function,moments,entropies,order statistics,residual life and reversed failure rate function.The parameters of the distribution were estimated using the maximum likelihood function.The maximum likelihood method is employed to estimate the model parameters and the approximate confidence intervals are also computed.Via a simulation study,the performance of the point and interval estimates are compared using different criteria.Employing real lifetime data sets,we verify that the offered model furnishes a better fit than some other lifetime models including Weibull,gamma and alpha powerWeibull models.
文摘Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness.
文摘In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
基金supported in part by National Key Research and Development Program of China(No.2022YFB2803002)National Natural Science Foundation of China(Nos.62235005,62127814,62225405,61975093,61927811,61991443,61925104 and 61974080)Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.
基金supported by the China Datang Corporation project“Study on the performance improvement scheme of in-service wind farms”,the Fundamental Research Funds for the Central Universities(2020MS021)the Foundation of State Key Laboratory“Real-time prediction of offshore wind power and load reduction control method”(LAPS2020-07).
文摘The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
文摘The continuous monitoring of the machine is beneficial in improving its process reliability through reflected power function distribution.It is substantial for identifying and removing errors at the early stages of production that ultimately benefit the firms in cost-saving and quality improvement.The current study introduces control charts that help the manufacturing concerns to keep the production process in control.It presents an exponentially weighted moving average and extended exponentially weighted moving average and then compared their performance.The percentiles estimator and the modified maximum likelihood estimator are used to constructing the control charts.The findings suggest that an extended exponentially weighted moving average control chart based on the percentiles estimator performs better than exponentially weightedmoving average control charts based on the percentiles estimator and modified maximum likelihood estimator.Further,these results will help the firms in the early detection of errors that enhance the process reliability of the telecommunications and financing industry.
文摘The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.