期刊文献+
共找到1,447篇文章
< 1 2 73 >
每页显示 20 50 100
Seasonal Forecasts of Precipitation during the First Rainy Season in South China Based on NUIST-CFS1.0
1
作者 Sinong LI Huiping YAN Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1895-1910,共16页
Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy ... Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy season(FRS,i.e.,April–June)over South China from 1982 to 2020 based on the global real-time Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0,previously known as SINTEX-F).The potential predictability and the practical forecast skill of NUIST-CFS1.0 for FRS precipitation remain low in general.But NUIST-CFS1.0 still performs better than the average of nine international models in terms of correlation coefficient skill in predicting the interannual precipitation anomaly and its related circulation index.NUIST-CFS1.0 captures the anomalous Philippines anticyclone,which transports moisture and heat northward to South China,favoring more precipitation in South China during the FRS.By examining the correlations between sea surface temperature(SST)and FRS precipitation and the Philippines anticyclone,we find that the model reasonably captures SST-associated precipitation and circulation anomalies,which partly explains the predictability of FRS precipitation.A dynamical downscaling model with 30-km resolution forced by the large-scale circulations of the NUIST-CFS1.0 predictions could improve forecasts of the climatological states and extreme precipitation events.Our results also reveal interesting interdecadal changes in the predictive skill for FRS precipitation in South China based on the NUIST-CFS1.0 hindcasts.These results help improve the understanding and forecasts for FRS precipitation in South China. 展开更多
关键词 seasonal forecast of precipitation first rainy season in South China global climate model prediction
下载PDF
INFLUENCES OF LOW-FREQUENCY MOISTURE TRANSPORTATION ON LOW FREQUENCY PRECIPITATION ANOMALIES IN THE ANNUALLY FIRST RAINY SEASON OF SOUTH CHINA IN 2010 被引量:1
2
作者 李丽平 许冠宇 +1 位作者 倪碧 柳艳菊 《Journal of Tropical Meteorology》 SCIE 2016年第S1期46-56,共11页
85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the p... 85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the precipitation of the first rain season and its relationships with moisture transport in South China,and channels of low-frequency water vapor transport and sources of low-frequency precipitation are revealed.The annually first raining season precipitation in 2010 is mainly controlled by 10-20 d and 30-60 d oscillation.The rainfall is more(interrupted) when the two low-frequency components are in the same peak(valley) phase,and the rainfall is less when they are superposed in the inverse phase.The 10-20 d low-frequency component of the moisture transport is more active than the 30-60 d.The10-20 d water vapor sources lie in the South India Ocean near 30° S,the area between Sumatra and Kalimantan Island(the southwest source),and the equatorial middle Pacific region(the southeast source),and there are corresponding southwest and southeast moisture transport channels.By using the characteristics of 10-20 d water vapor transport anomalous circulation,the corresponding low-frequency precipitation can be predicted 6 d ahead. 展开更多
关键词 LOW-FREQUENCY precipitation characteristics wavelet analysis LOW-FREQUENCY vapor sources annually annually first rainy season of South China
下载PDF
The Influence of Local Rainy and Dry Seasons on the Diurnal Temperature Range in Nigeria
3
作者 Stanley I. Echebima Andrew A. Obafemi 《Atmospheric and Climate Sciences》 CAS 2023年第2期314-332,共19页
This study analyzed the impact of the local dry and rainy seasons on diurnal temperature range (DTR), for each major climatic zone of Nigeria namely the tropical monsoon, tropical savannah and semi-arid, using meteoro... This study analyzed the impact of the local dry and rainy seasons on diurnal temperature range (DTR), for each major climatic zone of Nigeria namely the tropical monsoon, tropical savannah and semi-arid, using meteorological data from thirteen observation stations for the period 1981 to 2021. DTR was computed from the difference of minimum temperature from maximum temperature and yearly and forty one years’ monthly averages of DTR and rainfall were computed and plotted in different graphs. The overall results from each climatic zone showed that DTR fluctuates with the seasons and there is an inverse relationship between DTR and rainfall whereby the value of DTR decreases as the rainy season approaches but increases as the rainy season departs ushering in the dry season or conversely DTR increases as the dry season approaches and decreases as the dry season departs ushering-in the rainy season. Secondly, the average yearly patterns of rainfall and DTR are roughly and oppositely shaped parabolas where the peak value of rainfall is diametrically opposite to the trough value of DTR and the least or nil volume of rainfall corresponds to the highest value of DTR. Thirdly, due to the yearly seasonal cycle of dry and rainy seasons in Nigeria coupled with the inverse relationship between DTR and Rainfall, the seasonal plot of DTR and rainfall is also cyclic in pattern with DTR cycle lagging 180 degrees with the rainfall cycle and the intersection of the two cycles represents the departure of one season and onset of another season while each half-cycle represents either the dry or rainy season. Fourthly, the dependence of DTR on any season at hand in Nigeria makes DTR season-forcing. This fourth result is underpinned by a result that showed that the 1981 and 2021 patterns of DTR and 1981 and 2021 patterns of rainfall when compared were similar, the differences were in the volume of rainfall which was due to climate change that has taken place over the four decades and which also impacted DTR since DTR varies inversely with rainfall. Finally and notwithstanding the common grounds of the results stated above, the result further showed that each climatic zone of Nigeria reacts differently to the local and global climate changes leading to the magnitude of DTR and the volume of rainfall being different across climatic zones, with rainfall volume and duration decreasing towards the arid North from the Coastal South while contrariwise DTR increases towards the arid North from the Coastal South. 展开更多
关键词 Dry season rainy season Harmattan Period Primary and Secondary Axes of a Graph
下载PDF
STUDY ON THE RELATIONSHIP BETWEEN THE DECADAL VARIATIONS OF ANNUALLY FIRST RAINY SEASON PRECIPITATION OF GUANGXI AND SEA SURFACE TEMPERATURE OF INDIAN OCEAN IN SOUTHERN HEMISPHERE
4
作者 况雪源 黄梅丽 +1 位作者 林振敏 黄雪松 《Journal of Tropical Meteorology》 SCIE 2008年第2期137-140,共4页
Decadal circulation differences between more and less rainfall periods in the annually first rainy season of Guangxi and their association with sea surface temperature (SST) of the austral Indian Ocean are investigate... Decadal circulation differences between more and less rainfall periods in the annually first rainy season of Guangxi and their association with sea surface temperature (SST) of the austral Indian Ocean are investigated by using the NCEP/NCAR reanalysis data. The results are shown as follows. A pattern in which there is uniform change of the Guangxi precipitation shows a 20-year decadal oscillation and a 3-year interannual change. In contrast, a pattern of reversed-phase change between the north and the south of Guangxi has a 6-year interannual periodicity and quasi-biennial oscillation. In the period of more precipitation, the surface temperature in Eurasia is positively anomalous so as to lead to stronger low pressure systems on land and larger thermal contrast between land and ocean. Therefore, the air column is more unstable and ascending flows over Guangxi are intensified while the Hadley cell is weakened. Furthermore, the weaker western Pacific subtropical high and South Asia High, together with a stronger cross-equatorial flow, result in the transportation of more humidity and the appearance of more precipitation. The correlation analysis indicates that the Indian Ocean SST in Southern Hemisphere is closely associated with the variation of the seasonal precipitation of Guangxi on the decadal scale by influencing the Asian monsoon through the cross-equatorial flow. 展开更多
关键词 降雨 降雨量 海洋 大气
下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
5
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALinG deep learning convolutional neural networks(CNNs)
下载PDF
APPLICATION EXPERIMENT OF ASSIMILATING RADAR-RETRIEVED WATER VAPOR IN SHORT-RANGE FORECAST OF RAINFALL IN THE ANNUALLY FIRST RAINY SEASON OVER SOUTH CHINA 被引量:2
6
作者 张诚忠 陈子通 +4 位作者 万齐林 林振敏 黄燕燕 戴光丰 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2016年第4期578-588,共11页
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila... A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance. 展开更多
关键词 radar-retrieved water vapor RAinFALL in annually first rainy season SHORT-RANGE FORECAST data assimilation
下载PDF
Temporal Variations of the Frontal and Monsoon Storm Rainfall during the First Rainy Season in South China 被引量:11
7
作者 YUAN Fang WEI Ke +2 位作者 CHEN Wen FONG Soi Kun LEONG Ka Cheng 《Atmospheric and Oceanic Science Letters》 2010年第5期243-247,共5页
The temporal variations in storm rainfall during the first rainy season (FRS) in South China (SC) are investigated in this study. The results show that the inter-annual variations in storm rainfall during the FRS in S... The temporal variations in storm rainfall during the first rainy season (FRS) in South China (SC) are investigated in this study. The results show that the inter-annual variations in storm rainfall during the FRS in SC seem to be mainly influenced by the frequency of storm rainfall, while both frequency and intensity affect the inter-decadal variations in the total storm rainfall. Using the definitions for the beginning and ending dates of the FRS, and the onset dates of the summer monsoon in SC, the FRS is further divided into two sub-periods, i.e., the frontal and monsoon rainfall periods. The inter-annual and inter-decadal variations in storm rainfall during these two periods are investigated here. The results reveal a significant out-of-phase correlation between the frontal and monsoon storm rainfall, especially on the inter-decadal timescale, the physical mechanism for which requires further investigation. 展开更多
关键词 夏季季风 时空变化 暴雨期 中国 前汛期 年代际变化 锋面 季节
下载PDF
ON THE RELATIONSHIP BETWEEN PRECIPITATION ANOMALIES IN THE FIRST RAINING SEASON (APRIL-JUNE) IN SOUTHERN CHINA AND SST OVER OFFSHORE WATERS IN CHINA 被引量:1
8
作者 邓立平 王谦谦 《Journal of Tropical Meteorology》 SCIE 2002年第1期75-84,共10页
Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipi... Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward. 展开更多
关键词 雨季 海水 海洋表面温度 中国 SSTA 降水 五月 六月
下载PDF
Analysis on the Precipitation Characteristics in the Rainy Season in Liupanshui City in Recent 50 Years
9
作者 ZHANG Yan-mei ZHONG Jing +2 位作者 CHEN Hai-tao HUANG Tai-lin WU Hua-hong 《Meteorological and Environmental Research》 CAS 2011年第2期24-26,共3页
[Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi,... [Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi, Panxian and Shuicheng) of Liupanshui City from May to September during 1960-2009, the interannual, interdecadal variation and mutation characteristics of precipitation in the rainy season in Liupanshui City in recent 50 years were analyzed by using the linear tendency estimation, sliding T-test and Morlet wavelet analysis method. [Result] The rainfall in the rainy season in Liupanshui City in recent 50 years presented the decline trend, and the linear tendency rate was -15.4 mm/10 a. The precipitation in the rainy season in Liupanshui City had the obvious interannual and interdecadal variation characteristics. It was the obvious rainless period in the metaphase of 1960s, and the precipitation was comparatively more in late 1960s. It was the relatively rainless period in the whole 1970s. From late 1970s to late 1980s, the precipitation in the rainy season entered into the pluvial period, and it was the period when the precipitation was the most in recent 50 years. The precipitation was relatively less from late 1980s to metaphase of 1990s. It was the pluvial period in the middle and late periods of 1990s, and it was the rainless period when entered into the 21st century. The sliding T-test showed that the precipitation mutation point in the rainy season in Liupanshui City in recent 50 years was in 2002. The wavelet analysis showed that the precipitation in the rainy season in Liupanshui City had the significant multiple time scale characteristic. In the interdecadal scale, the precipitation had the significant 16-year periodic oscillation which stably existed in 50 years. In the interannual scale, the precipitation had the quasi-8-year periodic oscillation. [Conclusion] The research provided the scientific basis for the accurate forecast of drought and flood disasters, disaster prevention and reduction in the city. 展开更多
关键词 precipitation in the rainy season Variation characteristic MUTATION Liupanshui City China
下载PDF
THE INTERANNUAL AND DECADAL VARIABILITY OF PRECIPITATION FOR YUNNAN PROVINCE IN RAINY SEASON AND ITS RELATIONSHIP WITH TROPICAL UPPER LAYER TEAT CONTENT
10
作者 郑春怡 黄菲 普贵明 《Journal of Tropical Meteorology》 SCIE 2003年第2期164-172,共9页
Based on the monthly precipitation data of 126 observation stations from 1961 to 2000 in Yunnan Province, the interannual and decadal variability of precipitation in rainy seasons are studied by using wavelet analysis... Based on the monthly precipitation data of 126 observation stations from 1961 to 2000 in Yunnan Province, the interannual and decadal variability of precipitation in rainy seasons are studied by using wavelet analysis. It is shown that there is a 2-6 year oscillation at the interannual time scales and a quasi-30 year oscillation at the decadal time scales. These periodic oscillations relate to the distribution of tropical heat content. When the precipitation is much more (less) than normal, the upper seawater is colder (warmer) in almost all the tropical Indian Ocean, and warmer (colder) in the western Pacific as well as colder (warmer) in the eastern Pacific. The key areas of the anomaly heat content distribution that have significant correlation to the Yunnan precipitation in rainy season are in the southern hemispheric Indian Ocean with a dipole pattern in the winter as well as in the deep basin of the South China Sea (SCS) before the Yunnan rainy season begins. Therefore, the anomalous distributions of the heat content in the southern Indian Ocean and the SCS In winter are good indicators for predicting drought or flood in Yunnan Province in the following rainy season. 展开更多
关键词 数据统计 月变化 降雨 云南
下载PDF
Seasonal Difference of the Spatio-Temporal Variation of Precipitable Water Vapor in China
11
作者 Qixu Li Qianqian Song +1 位作者 Zhitong Qian Ying Huang 《Journal of Geoscience and Environment Protection》 2023年第5期159-173,共15页
This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and a... This study analyzes the spatial and temporal distribution characteristics of seasonal precipitable water vapor (PWV) in China between 1979 and 2008. To achieve this, the observed temperature dew point difference and atmospheric pressure at various altitudes of 102 radiosonde stations were utilized. The analysis involved calculating and examining the PWV variations across the different seasons in the study period. The results are illustrated as follows: 1) The annual mean and seasonal mean PWV over China is characterized by decreasing from southeast to northwest. The PWV has obvious seasonal features. It is the least in winter, which is mainly affected by latitude and altitude, and the most in summer, which is mainly affected by the monsoon. It is the medium in spring and autumn, with more in autumn than in spring. 2) The spatial distribution pattern of four seasonal PWV is approximately opposite to its variation coefficient distribution pattern, that is, the monsoon (non-monsoon) areas with more (less) PWV have a smaller (larger) variation amplitude. 3) The distribution pattern of four seasonal PWV shows a consistent distribution pattern in the whole region and the winter characteristics are the most significant. The abnormal variation of PWV shows consistent interdecadal oscillation, and it exhibits an obvious phase transition around 2002 when the PWV has an increasing shift in winter, spring, and summer, while it is more complicated in autumn. 展开更多
关键词 Precipitable Water Vapor Distribution Characteristics Four seasons
下载PDF
Humidity Effect and Its Influence on the Seasonal Distribution of Precipitation δ^(18)O in Monsoon Regions 被引量:6
12
作者 章新平 刘晶淼 +2 位作者 何元庆 田立德 姚檀栋 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期271-277,共7页
The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit ATd in the atmosphere, is put forward firstly and the relationships between t... The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit ATd in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and ATd are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation. Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of mean monthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud are simulated. A very good agreement between the seasonal variations of the simulated mean δ18O and the mean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensate of cloud experiences a temperature effect. Such a result is markedly different from the amount effect at the ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be found that, in the dry season from November to April, the increasing trend with falling distance of δ18O in falling raindrops corresponds remarkably to the great △Td, showing a strong evaporation enrichment function in falling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displays an unapparent increase corresponding to the small △Td, except in May. By comparing the simulated mean δ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthly δ18O variations agree very well. On average, the δ18O values are relatively lower because of the highly moist air, heavy rainfall, small ATd and weak evaporation enrichment function of stable isotopes in the falling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect. 展开更多
关键词 humidity effect dew-point deficit stable isotope seasonal variation precipitation
下载PDF
Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation 被引量:3
13
作者 Changyu ZHAO Haishan CHEN Shanlei SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期445-456,共12页
Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated usin... Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w). 展开更多
关键词 seasonal precipitation prediction land surface process soil enthalpy soil moisture soil temperature
下载PDF
Reconstruction of the starting time series of rainy season in Yunnan and the evolvement of summer monsoon during 1711-1982 被引量:2
14
作者 YANG Yuda MAN Zhimin ZHENG Jingyun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期212-220,共9页
According to the textual research into the historical documents dominated by archives yearly, as well as the verification with several other kinds of data, the later or earlier starting time of the rainy seasons in Yu... According to the textual research into the historical documents dominated by archives yearly, as well as the verification with several other kinds of data, the later or earlier starting time of the rainy seasons in Yunnan during 1711-1982 has been reconstructed. The analysis indicates that there are obvious fluctuations in the starting date of the rainy seasons in Yunnan in a year or years, and long fluctuation on the decadal scale. The rainy season comes earlier in the early 18th century, later in the 19th century and earlier again in the 20th century. This reflects to a certain degree the gradual change of the summer monsoon in Yunnan. There exists an obvious quasi-3 years cycle, which is related to EI-Nino's quasi-3 years cycle, and a 11.3-year cycle which is notably related to the 11-year cycle of the solar activity of starting date of the rainy seasons in Yunnan. Meanwhile, the dissertation finds that the EI-Nino is very important to the starting date of the rainy seasons in Yunnan. The starting date of the rainy seasons in Yunnan often comes later or normally in the year of EI-Nino. However, there is an obvious imperfect period in such influence, which in turn may mean that there is a certain fluctuation in the effect of ENSO on Asian summer monsoon. 展开更多
关键词 YUNNAN Qing Dynasty starting date of rainy season summer monsoon ENSO
下载PDF
Precipitation Changes in Wet and Dry Seasons over the 20th Century Simulated by Two Versions of the FGOALS Model 被引量:2
15
作者 MA Shuangmei ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期839-854,共16页
Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms... Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms of their AGCM component, but the remaining parts of the system are almost identical. Both models reasonably reproduce the mean-state features of the timings of the wet and dry seasons and related precipitation amounts, with pattern correlation coefficients of 0.65-0.84 with observations. Globally averaged seasonal precipitation changes are analyzed. The results show that wet sea- sons get wetter and the annual range (precipitation difference between wet and dry seasons) increases during the 20th century in the two models, with positive trends covering most parts of the globe, which is consistent with observations. However, both models show a moistening dry season, which is opposite to observations. Analysis of the globally averaged moisture budget in the historical climate simulations of the two models shows little change in the horizontal moisture advection in both the wet and dry seasons. The globally averaged seasonal precipitation changes are mainly dominated by the changes in evaporation and vertical moisture advection. Evaporation and vertical moisture advection combine to make wet seasons wetter and enhance the annual range. In the dry season, the opposite change of evaporation and vertical moisture advection leads to an insignificant change in precipitation. Vertical moisture advection is the most important term that determines the changes in precipitation, wherein the thermodynamic component is dominant and the dynamic component tends to offset the effect of the thermodynamic component. 展开更多
关键词 20th century historical climate simulation FGOALS-g2 FGOALS-s2 wet season dry season precipitation change water vapor budget diagnosis
下载PDF
SSTA SIGNAL CHARACTERISTIC ANALYSIS OVER THE INDIAN OCEAN DURING RAINY SEASON IN CHINA 被引量:1
16
作者 晏红明 严华生 谢应齐 《Journal of Tropical Meteorology》 SCIE 2001年第2期122-130,共8页
The teleconnection distribution characteristics of sea surface temperature (SST) over the India Ocean and the precipitation during rainy season in China were studied by using the methods of EOF and CCA. The results in... The teleconnection distribution characteristics of sea surface temperature (SST) over the India Ocean and the precipitation during rainy season in China were studied by using the methods of EOF and CCA. The results indicate that the change of SST field will affect the change of rain belt during rainy seasons in China, and greatly affect the precipitation in northwest and southwest China, the Yangzi and Yellow River downstream basins. Strong signal phenomena of SSTA over India Ocean were revealed that showed the anoma-lous distribution of drought and flood in China. It shows that the precipitation during rainy seasons in China may be forecast by analyzing SST distribution characteristics over the India Ocean. 展开更多
关键词 precipitation in China’s rainy season SSTA CANONICAL correlation analysis signal characteristics
下载PDF
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau 被引量:3
17
作者 ZHOU Tairan HAN Chun +3 位作者 QIAO Linjie REN Chaojie WEN Tao ZHAO Changming 《Journal of Arid Land》 SCIE CSCD 2021年第10期1015-1025,共11页
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact... Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content,we continuously monitored the seasonal dynamics in soil water content in four plots(natural grassland,Caragana korshinskii,Armeniaca sibirica and Pinus tabulaeformis)in Chinese Loess Plateau.The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth,showing obvious seasonal variations.Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland,and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm.Spring and autumn are the key seasons for replenishment of soil water by precipitation.Changes in soil water content are affected by precipitation,vegetation types,soil evaporation and other factors.The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area.Due to artificial vegetation plantation in this area,soil will face a water deficit crisis in the future. 展开更多
关键词 soil water content vegetation type precipitation seasonal change EVAPORATION
下载PDF
IMPACT OF SSTA OF SOUTHERN HEMISPHERE ON FLOOD SEASON PRECIPITATION ANOMALIES IN YUNNAN 被引量:1
18
作者 杨竹云 杨素雨 +2 位作者 严华生 张瑾文 古书鸿 《Journal of Tropical Meteorology》 SCIE 2015年第3期255-264,共10页
Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of c... Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of correlation analysis and composite analysis and a significance testing method to two sets of samples of average differences. The goal is to investigate into the influence of the Southern Hemispheric(SH) SST on the summer precipitation in Yunnan from January to May so as to identify the key time and marine regions. Physical mechanisms are obtained by analyzing the influence of sea level wind and the key marine regions on the precipitation during Yunnan's rain season.Results show that there is indeed significant relationship between the SST in SH and summer precipitation in Yunnan.The key areas for influencing the summer precipitation are mainly distributed in a region called "West Wind Drift" in the SH, including the Southeast Indian, southern Australia, west coast of eastern Pacific off Chile, Peru and the southwest Atlantic Magellan. Besides, the most significant marine region is the west coast of Chile and Peru(cold-current areas of the eastern Pacific). Diagnostic analysis results also showed that monsoons in the Bay of Bengal, a cross-equatorial flow in the Indian Ocean near the equator and southwest monsoon in India weaken during the warm phase of the Peruvian cold current in the eastern Pacific. Otherwise, they strengthen. 展开更多
关键词 SST of Southern Hemisphere YUNNAN precipitation anomalies during rain season key marine area West Wind Drift
下载PDF
Characteristics of abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan Plateau and their impacts on summer precipitation in China 被引量:1
19
作者 Rong Gao HaiLing Zhong +1 位作者 WenJie Dong ZhiGang Wei 《Research in Cold and Arid Regions》 2011年第1期24-30,共7页
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-te... In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there ~s less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mr. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling. 展开更多
关键词 Tibetan Plateau snow cover seasonal freeze-thaw layer precipitation
下载PDF
Interannual Variation of the Onset of Yunnan’s Rainy Season and Its Relationships with the Arctic Oscillation of the Preceding Winter 被引量:1
20
作者 Yan Chen Shichang Guo +2 位作者 Yu Liu Jianhua Ju Juzhang Ren 《Atmospheric and Climate Sciences》 2017年第2期210-222,共13页
Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timi... Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timing of the rainy sea-son by using the NCEP/NCAR reanalysis and observational precipitation data for 1961-2010. The results indicated that, on an interannual time scale, intense Asian summer monsoon and an active EU-pattern wave train circulation in its positive phase, associated with a cold cyclonic cell covering the western part of the East Asian subtropical westerly jet (EASWJ), jointly contributed to the onset of the rainy season in May. Otherwise, the onset might be suppressed. The cold cyclonic cell over East Asia likely led to the southward shift and enhancement of EASWJ as well as its secondary circulation around the jet entrance, which could provide a favorable dynamic and thermal condition for rainfalls in Yunnan as was revealed in previous studies on 10 - 30-day time scale. Further examination showed that the preceding wintertime AO played a significant role in the timing of the onset of the rainy season before the mid-1980s’ by mostly modulating the wave-train-like circulation over East Asia in May. During that time period, when the AO index of the previous winter was positive (negative), Yunnan’s rainy season tended to begin earlier (later) than normal. Correspond-ingly, the precipitation in May was also closely linked to wintertime AO. 展开更多
关键词 ONSET of Yunnan’s rainy season East Asian SUBTROPICAL WESTERLY Jet (EASWJ) ARCTIC Oscillation (AO) inTERANNUAL Variation
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部