期刊文献+
共找到1,063篇文章
< 1 2 54 >
每页显示 20 50 100
Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers 被引量:1
1
作者 郑锦韬 张洋 +3 位作者 鱼在洋 熊志强 罗晖 汪之国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期35-41,共7页
Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz... Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range. 展开更多
关键词 precision measurement current noise suppression low frequency double-resonance alignment magnetometer
下载PDF
Envita’s Precision Cancer Care: 35-Fold Improvement in Response Rates
2
作者 Sheba Goklany John C. Oertle III +19 位作者 Ronald Matthias Jr. Daniel Warren David Medina Rory Sears Robert Zieve Kendra Quart Christopher Aussems Jon Moma Shannon Miller Zach Poteet Conner Coffin Courtney Middleton Erika Ware Phylicia Zarnosky Julie Nowak Winlove Suasin Daniel Conway Chad Burk Ruth Tan-Lim Dino Prato 《Journal of Cancer Therapy》 2024年第4期99-120,共22页
New clinical approaches are imperative beyond the widely adopted National Comprehensive Cancer Network (NCCN) guidelines, utilized by prominent cancer institutions. Cancer is the leading cause of death among individua... New clinical approaches are imperative beyond the widely adopted National Comprehensive Cancer Network (NCCN) guidelines, utilized by prominent cancer institutions. Cancer is the leading cause of death among individuals younger than 85 years within the United States. Despite significant technological advances, including the expenditure of hundreds of billions, treatment outcomes and overall survival have not notably improved for most types of advanced cancer over the last several decades. Over the past 24 years, Envita Medical Centers has pioneered a unique form of personalized treatment approach for late-stage and refractory cancer patients, introducing groundbreaking innovations in the field. Our integrated algorithm utilizes advanced genomics, transcriptomics, and highly tailored immunotherapy, resulting in remarkable outcome improvements. This study presents Envita’s innovative personalized treatment algorithms and examines the response outcomes of 199 late-stage cancer patients treated at Envita Medical Centers over a two-year period. Compared to standard of care and palliative chemotherapy, Envita’s treatment demonstrated a remarkable 35-fold improvement in overall response rates (Figure 1). Moreover, 88% of the patients, the majority presenting with Stage 3 or 4 cancer, experienced a 43-fold improvement in quality of life with minimal side effects, as compared to standard of care chemotherapy and palliative care. This revolutionary success is attributed to Envita’s personalized therapeutic algorithms, which incorporate customized immunotherapy. Envita’s precision care approach has also achieved a 100% better response rate compared to over 65 global chemotherapy clinical trials with more than 2700 patients. The results from this study suggest that a wider utilization of Envita’s personalized approach can significantly benefit patients with late-stage and refractory cancer. 展开更多
关键词 Envita Medical Centers Late-stage Cancer Overall Response Rate Quality of Life Circulating Tumor Cells (CTCs) Mutant Allele frequency (MAF) precision Care
下载PDF
Design of Equal Precision Frequency Meter Based on FPGA 被引量:5
3
作者 Yi-yuan Fang Xue-jun Chen 《Engineering(科研)》 2012年第10期696-700,共5页
To overcome the shortcoming that the traditional frequency measurement method does not meet the requirement of equal precision, a design method of equal precision frequency meter based on FPGA is proposed. The system ... To overcome the shortcoming that the traditional frequency measurement method does not meet the requirement of equal precision, a design method of equal precision frequency meter based on FPGA is proposed. The system modules are all realized in Altera’s FPGA chip EP2C35F672C8. Experimental results show that the system can measure frequencies with equal precision in the whole frequency range, and the measurement error is small. It achieves the requirement of equal precision measurements. 展开更多
关键词 FPGA Equal precision frequency MEASUREMENT
下载PDF
APPROACH OF IMPROVING PRECISION IN ULTRASONIC DOPPLER BLOODSTREAM SPEED MEASUREMENT BY CHAOS-BASED FREQUENCY DETECTING 被引量:3
4
作者 Zhang Shuqing Jin Shijiu +2 位作者 Lv Jiangtao Zhang Liguo Li Jun 《Journal of Electronics(China)》 2006年第3期457-460,共4页
It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with d... It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with dump is introduced in the letter, numerical analysis is carried out by four-order Runge-Kutta method. An oscillator array is designed according to the frequency of the ultrasonic wave. When the external signals are inputted, computational algorithm is used to scan the array in turn and analyze the result, and the frequency can be determined. Based on the methods above, detecting the carotid blood flow speed accurately is realized. The Signal-to-Noise Ratio (SNR) of-20.23dB is obtained by the result of experiments. In conclusion, the SNR has been improved and the precision of the measured bloodstream speed has been increased, which can be 0.069% to 0.13%. 展开更多
关键词 CHAOS frequency detecting Bloodstream speed measuring Ultrasonic Doppler Signal-to-Noise Ratio (SNR) Measuring precision
下载PDF
A novel high precision Doppler frequency estimation method based on the third-order phase-locked loop 被引量:1
5
作者 Tao Deng Mao-Li Ma +1 位作者 Qing-Hui Liu Ya-Jun Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第9期83-90,共8页
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points... In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved. 展开更多
关键词 Doppler frequency measurement:deep space exploration:carrier tracking:phase locked loop:high precision
下载PDF
Precision Frequency Measurement of ^(87)Rb 5S_(1/2)(F=2)→5D_(5/2)(F″=4)Two-Photon Transition through a Fiber-Based Optical Frequency Comb
6
作者 夏巍 戴少阳 +3 位作者 张胤 李坤乾 于齐 陈徐宗 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期30-34,共5页
The absolute frequency of 87Rb 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition at 778nm is measured in an accuracy of 44kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of 5.0 ... The absolute frequency of 87Rb 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition at 778nm is measured in an accuracy of 44kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of 5.0 × 10-13@1 s is employed for the light source. By using a periodically poled lithium niobate, the femtosecond pulse operating in 1556 nm is frequency-doubled to 778 nm to obtain the direct two-photon transition spectroscopy of thermal rubidium vapor. Through sweeping the carrier envelope offset frequency (fceo), the 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition line is clearly resolved and its absolute frequency is determined via the peak-finding of the fitting curve. After the frequency correction, the measured result agrees well with the previous experiment on this transition. The entire potential candidate of optical frequency standard for system configuration is compact and robust, providing a telecommunication applications. 展开更多
关键词 precision frequency Measurement of in is F=2 on as been Rb 5S F Two-Photon Transition through a Fiber-Based Optical frequency Comb
下载PDF
Fluke 9640A RF Reference Source combines level precision,dynamic range,frequency capability in a single instrument
7
作者 Stream lines workload enables automationof calibration procedures with MET/CAL(Plus Calibration Measurement Software 《国外电子测量技术》 2007年第1期81-81,共1页
关键词 Source RF Fluke 9640A RF Reference Source combines level precision dynamic range frequency capability in a single instrument
下载PDF
On ionosphere-delay processing methods for single-frequency precise-point positioning 被引量:1
8
作者 Tu Rui Zhang Qin Huang Guanwen Zhao Hong 《Geodesy and Geodynamics》 2011年第1期71-76,共6页
In single-frequency precise-point positioning of a satellite,ionosphere delay is one of the most important factors impacting the accuracy. Because of the instability of the ionosphere and uncertainty of its physical p... In single-frequency precise-point positioning of a satellite,ionosphere delay is one of the most important factors impacting the accuracy. Because of the instability of the ionosphere and uncertainty of its physical properties, the positioning accuracy is seriously limited when using a precision-limited model for correction. In order to reduce the error, we propose to introduce some ionosphere parameter for real-time ionosphere-delay estimation by applying various mapping functions. Through calculation with data from the IGS( International GPS Service) tracking station and comparison among results of using several different models and mapping functions, the feasibility and effectiveness of the new method are verified. 展开更多
关键词 single-frequency precise-point positioning ionosphere delay model correction mapping function parameter estimation
下载PDF
Precision Balance Method for Cupped Wave Gyro Based on Cup-bottom Trimming 被引量:9
9
作者 TAO Yi XI Xiang +3 位作者 XIAO Dingbang TAN Yingqi CUI Hongjuan WU Xuezhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期63-70,共8页
The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wal... The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wall trimming requires high control accuracy of trimming quantity, which increases the production cost and decreases the fabrication efficiency in large extent. However, it is hard to reach the high balance accuracy with the natural frequency split of mHz grade by using the conventional method. In this paper, the lumped mass dynamic model of the cupped wave gyro is built by discretization method, and the effects of different position trimming on the natural frequency are analyzed. It is pointed out that trimming off a tiny quantity of material from cup-wall causes large variation of the natural frequency is the main reason for the low accuracy of the conventional mechanical balance method. Then, a precision balance method for cupped wave gyro based on cup-bottom trimming is presented and the entire procedures of this method are given. The static balance process and dynamic balance process of the precision balance method are simulated by the finite element software. The simulation result shows that the precision balance method based on cup-bottom trimming brings less additional natural frequency split in the static balance process, minimizes the natural frequency split to mHz grade and rectify the angle of mode offset to 0.1° grade in the dynamic balance process, furthermore, the method decreases the requirement for control accuracy of trimming quantity evidently. The research work provides references for structure optimization design and balance process plan of the cupped wave gyro. 展开更多
关键词 cupped wave gyro precision balance TRIMMING modal analysis natural frequency split
下载PDF
TIME-SPACE CONCEPT FOR PRECISION MEASUREMENT 被引量:4
10
作者 LIU Xiaokang PENG Donglin ZHU Ge WANG Xianquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期112-115,共4页
The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in... The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept. 展开更多
关键词 Time-space precision measurement Control flow Differential frequency Time grating
下载PDF
Processing Methods for Conical Scan Hopped-Frequency Signal 被引量:1
11
作者 王晓红 龙腾 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期467-472,共6页
The new radar system of combination of the hopped-frequency with the conical scan is presented. According to the principle and expression of the conical scan hopped-frequency signal, the angle processing method in whi... The new radar system of combination of the hopped-frequency with the conical scan is presented. According to the principle and expression of the conical scan hopped-frequency signal, the angle processing method in which angle information is obtained by taking discrete Fourier transform (DFT) for the conical envelop of each scattering centre by means of high range resolution profile (HRRP) is presented, and the corresponding formula is derived. The influence of non-ideal factors, such as amplitude fluctuation noise and system noise, leakage of time and frequency domain, unstable rotation of antenna, and missile rotation, on angle-measurement precision and the possible solving methods are also focused on. The simulation results show that the combination of the hopped-frequency and conical scan system could get satisfactory angle information, which could ensure good quality when used in practical tracking radar. 展开更多
关键词 conical scan hopped frequency high range resolution spatially distributed targets angle-measure precision
下载PDF
Passive Localization Using Time Difference of Arrival and Frequency Difference of ArrivalWC 被引量:1
12
作者 Xiansheng Guo Yan Zhang Botao Zeng 《Journal of Computer and Communications》 2018年第1期65-73,共9页
In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati... In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA. 展开更多
关键词 Four-Satellite LOCALIZATION TDOA (Time DIFFERENCE of Arrival) FDOA (frequency DIFFERENCE of Arrival) GDOP (Geometric DILUTION of precision) Passive LOCALIZATION
下载PDF
Dynamic Accuracy Design Method of Ultra-precision Machine Tool 被引量:3
13
作者 Guo-Da Chen Ya-Zhou Sun +3 位作者 Fei-Hu Zhang Li-Hua Lu Wan-Qun Chen Nan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable... Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool. 展开更多
关键词 Dynamic accuracy design Ultra-precision machine tool frequency domain Error allocation
下载PDF
Precision spectroscopy with a single ^(40)Ca^+ ion in a Paul trap
14
作者 管桦 黄垚 +3 位作者 刘培亮 边武 邵虎 高克林 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期103-116,共14页
Precision measurement of the 4s2 S1/2-3d2 D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more ... Precision measurement of the 4s2 S1/2-3d2 D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more than one month. The linewidth of a 729 nm laser is reduced to about 1 Hz by locking to a super cavity for longer than one month uninterruptedly. The overall systematic uncertainty of the clock transition is evaluated to be better than 6.5 ×10^-16. The absolute frequency of the clock transition is measured at the 10^-15 level by using an optical frequency comb referenced to a hydrogen maser which is calibrated to the SI second through the global positioning system (GPS), The frequency value is 411 042 129 776 393.0(1.6) Hz with the correction of the systematic shifts. In order to carry out the comparison of two 40Ca+ optical frequency standards, another similar 40Ca+ optical frequency standard is constructed. Two optical frequency standards exhibit stabilities of 1 × 10^-14 T-1/2 with 3 days of averaging. Moreover, two additional precision measurements based on the single trapped 40Ca+ ion are carried out. One is the 3d2Ds/2 state lifetime measurement, and our result of 1174(10) ms agrees well with the results reported in [Phys. Rev. A 62 032503 (2000)] and [Phys. Rev. A 71 032504 (2005)]. The other one is magic wavelengths for the 4s2S1/2-3d2Ds/2 clock transition; λ |mj|=1/2= 395.7992(7) nm and λ|m|=3/2 = 395.7990(7) nm are reported, and it is the first time that two magic wavelengths for the 40Ca+ clock-transition have been reported. 展开更多
关键词 optical frequency standard precision spectroscopy Ca+ ion lifetime measurement magic wavelength
下载PDF
New designed helical resonator to improve measurement accuracy of magic radio frequency
15
作者 Tian Guo Peiliang Liu Chaohong Lee 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期268-272,共5页
Based upon the new designed helical resonator,the resonant radio frequency(RF)for trapping ions can be consec-utively adjusted in a large range(about 12 MHz to 29 MHz)with high Q-factors(above 300).We analyze the heli... Based upon the new designed helical resonator,the resonant radio frequency(RF)for trapping ions can be consec-utively adjusted in a large range(about 12 MHz to 29 MHz)with high Q-factors(above 300).We analyze the helical resonator with a lumped element circuit model and find that the theoretical results fit well with the experimental data.With our resonator system,the resonant frequency near magic RF frequency(where the scalar Stark shift and the second-order Doppler shift due to excess micromotion cancel each other)can be continuously changed at kHz level.For ^(88)Sr^(+) ion,compared to earlier results,the measurement accuracy of magic RF frequency can be improved by an order of magnitude upon rough calculation,and therefore the net micromotion frequency shifts can be further reduced.Also,the differential static scalar polarizability △α0 of clock transition can be experimentally measured more accurately. 展开更多
关键词 trapped ions helical resonator magic radio frequency precision measurements
下载PDF
MEASURING PRECISION OF INDUCED POLARIZATION METHOD
16
作者 He,Jishan(Central South University of Technology,Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1994年第4期1-6,共6页
MEASURINGPRECISIONOFINDUCEDPOLARIZATIONMETHOD¥He,Jishan(CentralSouthUniversityofTechnology,Changsha410083)Ab... MEASURINGPRECISIONOFINDUCEDPOLARIZATIONMETHOD¥He,Jishan(CentralSouthUniversityofTechnology,Changsha410083)Abstract:Onthepremi... 展开更多
关键词 MEASURING precision induced POLARIZATION method (IP) DUAL-frequency IP frequency DOMAIN IP time IP
下载PDF
Mesoplasticity Approach to Studies of the Cutting Mechanism in Ultra-precision Machining 被引量:2
17
作者 LEE WB Rongbin WANG Hao +2 位作者 TO Suet CHEUNG Chi Fai CHAN Chang Yuen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期219-228,共10页
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast... There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale. 展开更多
关键词 ultra-precision machining cutting mechanism mesoplasticity shear angle prediction size effect micro-cutting force variation high frequency tool-tip vibration
下载PDF
New research trends on high-precision time transfer technology 被引量:5
18
作者 DONG Ruifang QUAN Run'ai +6 位作者 HOU Feiyan WANG Shaofeng XIANG Xiao ZHOU Conghua WANG Mengmeng LIU Tao ZHANG Shou'gang 《Instrumentation》 2015年第4期3-15,共13页
High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-... High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system. 展开更多
关键词 HIGH-precision time TRANSFER QUANTUM improvement PULSE SHAPING QUANTUM frequency COMB
下载PDF
Stochastic Analysis of Low-Cost Single-Frequency GPS Receivers 被引量:1
19
作者 Mohamed Elsayed Elsobeiey 《Positioning》 2016年第3期91-100,共11页
Typically, dual-frequency geodetic grade GNSS receivers are utilized for positioning applications that require high accuracy. Single-frequency high grade receivers can be used to minimize the expenses of such dual-fre... Typically, dual-frequency geodetic grade GNSS receivers are utilized for positioning applications that require high accuracy. Single-frequency high grade receivers can be used to minimize the expenses of such dual-frequency receivers. However, user has to consider the resultant positioning accuracy. Since the evolution of low-cost single-frequency (LCSF) receivers is typically cheaper than single-frequency high grade receivers, it is possible to obtain comparable positioning accuracy if the corresponding observables are accurately modelled. In this paper, two LCSF GPS receivers are used to form short baseline. Raw GPS measurements are recorded for several consecutive days. The collected data are used to develop the stochastic model of GPS observables from such receivers. Different functions are tested to determine the best fitting model which is found to be 3 parameters exponential decay function. The new developed model is used to process different data sets and the results are compared against the traditional model. Both results from the newly developed and the traditional models are compared with the reference solution obtained from dual-frequency receiver. It is shown that the newly developed model improves the root-mean-square of the estimated horizontal coordinates by about 10% and improves the root-mean-square of the up component by about 39%. 展开更多
关键词 Single-frequency Receiver Stochastic Analysis precise Point Positioning
下载PDF
An Advanced Multi-Band Acousto-Optical Radio-Wave Spectrometer with Multi-Channel Frequency Processing for Astrophysical Studies
20
作者 Alexandre S. Shcherbakov Miguel Chavez Dagostino +1 位作者 Adan Omar Arellanes Eduardo Tepichin 《International Journal of Astronomy and Astrophysics》 2016年第4期393-409,共18页
We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in t... We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges. 展开更多
关键词 precise Acousto-Optical Spectrum Analysis frequency Bandwidth and Resolution Wide-Aperture Crystalline Cell Astronomical Instrumentation
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部