The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also r...In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 + 0.1 mm (range: 0.77-1.05 mm), 0.77 + 0.11 mm (range: 0.60-0.94 mm), 0.70 + 0.08 mm (range: 0.62-0.80 ram), and 0.68 _+ 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the intraocular pressure before, during and after the intra-abdominal pressure elevation. These results verified that the increased intra-abdominal pressure widens the orbital subarachnoid space in this acute trial, but does not alter the intraocular pressure, indicating that intraocular pressure is not affected by rapid increased in- tra-abdominal pressure. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ONRC-14004947).展开更多
This paper examines the temporal change and spatial variation of population pressure on the ecological environment in China.We have collected sufficient data from the statistical yearbooks of 31 provincial administrat...This paper examines the temporal change and spatial variation of population pressure on the ecological environment in China.We have collected sufficient data from the statistical yearbooks of 31 provincial administrative areas in 1990,1995,2000,2005,and 2010.Using a geographic information system(GIS) and relevant models,we analyzed the trend of the population pressure on ecological environment and the change of the gravity center of ecological environment quality.We conclude that:(1) generally,population pressure on the ecological environment in China was becoming higher during1990-2010,especially in some areas where the population and environment were in serious imbalance and the ecological environment experienced severe pollution;(2) during a certain period,population pressure on the ecological environment was becoming lower in some areas,but the ecological environment was getting worse;(3) the areas with super-high population pressure on the ecological environment were Beijing,Tianjin,and Shanghai;(4) the gravity center of population pressure on the ecological environment and the center of ecological environment quality move differently during the study time period,but the general trend was similar- both of them were moving from west to east.Based on the analysis,this paper also provides some policy suggestions on the control of ecological environment quality.展开更多
A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and t...A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
In this paper,we investigate the regularity criterion via the pressure of weak solutions to the micropolar fluid equations in three dimensions.We obtain that for 0<α<1 if p€L^(2/a)(0,T;B^α∞,∞),then the weak ...In this paper,we investigate the regularity criterion via the pressure of weak solutions to the micropolar fluid equations in three dimensions.We obtain that for 0<α<1 if p€L^(2/a)(0,T;B^α∞,∞),then the weak solution(u,ω)is regular on(0,T).展开更多
Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed p...Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile en- ergy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Sim- ulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Exper- iments also support this evidence.展开更多
Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters a...Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters are still less clear.On three similar east-west orientated streets with different degrees of tree cover-low(13%),medium(35%),and high(75%),urban microclimatic parameters and human physiological indices for six male students were simultaneously measured on three cloudless days in summer 2018.The results show that the differences in tree cover were predominant in influencing urban thermal environment and comfort.The street with the highest tree cover had significantly lower physiological equivalent temperature(PET) and more comfortable than the other two streets.The frequency of strong heat stress(PET> 35℃) was 64%,11 %,and 0%,respectively,for streets with low,medium,and high tree cover.For the six male university students,human physiological indices varied greatly across the three streets with different tree cover.Systolic blood pressure,diastolic blood pressure,and pulse rate increased with decreasing tree cover.The results also suggest that urban thermal environment and comfort had considerable impact on human physiological parameters.Our study provides reasons for urban planners to plant trees along streets to improve the thermal environment and promote urban sustainability.展开更多
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s...Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.展开更多
Reducing the linear system of two first order equilibrium equations involving normal stress σ(ρ,θ) and shearing stress v(ρ,θ), by elimination, to two decoupled second order equations in σ and v, ...Reducing the linear system of two first order equilibrium equations involving normal stress σ(ρ,θ) and shearing stress v(ρ,θ), by elimination, to two decoupled second order equations in σ and v, we find that, for pressure only case, v(ρ,θ) vanishes in the half space. Consequently, the second order equation in σ can be simplified. In the language of linear system analysis, the medium(system) function, characterizing the mechanical behavior of a particulate medium in pressure only case, is obtained from the simplified second order equation ( 2 ρ+ 2 θ)σ(ρ,θ)=0 and can be inverted to give impulse reponse explicitly. Thus, response σ α(ρ,θ) may be computed directly from input, i.e., the surface pressure φ α(ρ) , by integration. Some explicit formulas for transmission problems, including response to input of strip linearly increasing pressure, are given in the paper.展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
In order to predict the surge pressure caused in the horizontal well drilling process, a new simple and applicable method has been established. It is based on the general theory of hydrostatic drilling fluid mechanics...In order to predict the surge pressure caused in the horizontal well drilling process, a new simple and applicable method has been established. It is based on the general theory of hydrostatic drilling fluid mechanics, and specifically described the flowing physical model towards surge pressure in horizontal well annulus, taking the effect of string eccentricity on the flowing law of drilling fluid into consideration. According to the constitutive equation of casson-mode under one-dimensional steady flow and the equations of annular flow rate under different drill string working conditions, this paper introduced the flow rate computation models of axial laminar flow in eccentric annulus apply to horizontal well, of which the numerical model was calculated by the program called Mathematica, ultimately, a new model for surge pressure prediction towards each interval in horizontal well was put forward. Application examples indicated that it can solve questions easily and precisely, which presents important meaning of guidance to the safety control while horizontal well drilling.展开更多
This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffract...This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.展开更多
Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-la...Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-layered media subjected to P wave incidence from the elastic half-space are derived in terms of displacement potentials.The system is composed of ideal fluid,porous medium,and underlying elastic solid.By numerical examples,the effects of porous medium and the incident wave angle on the dynamic pressures of ideal fluid are analyzed.The results show that the existence of the porous medium,especially in the partially saturated case,may significantly affect the dynamic pressures of the overlying fluid.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are deriv...This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.展开更多
In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric fiel...In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.展开更多
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flo...Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.展开更多
In this article, the governing equations for the unsteady flow of viscoelastic fluid in the eccentric annulus with the inner cylinder reciprocating axially and the expression of the pressure distribution on the wall o...In this article, the governing equations for the unsteady flow of viscoelastic fluid in the eccentric annulus with the inner cylinder reciprocating axially and the expression of the pressure distribution on the wall of the inner cylinder of the annulus are established and derived, respectively, under the bipolar coordinate system. The equations and the expression are solved and calculated numerically using the finite difference method, respectively. The curves of the pressure distribution on the wall of the inner cylinder of the aqueous solution of Hydrolyzed Polyacrylamide (HPAM) are plotted and the influences of annular eccentricity, stroke, and stroke frequency on the pressure distribution are analyzed.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
文摘In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can re- lieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 + 0.1 mm (range: 0.77-1.05 mm), 0.77 + 0.11 mm (range: 0.60-0.94 mm), 0.70 + 0.08 mm (range: 0.62-0.80 ram), and 0.68 _+ 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the intraocular pressure before, during and after the intra-abdominal pressure elevation. These results verified that the increased intra-abdominal pressure widens the orbital subarachnoid space in this acute trial, but does not alter the intraocular pressure, indicating that intraocular pressure is not affected by rapid increased in- tra-abdominal pressure. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ONRC-14004947).
基金supported by National Natural Science Foundation of China[Grant No.41171134]Peking University-Lincoln Institute Center for Urban Development and land Policy2013 Jiangsu Province Graduate Student Research Innovation project[Grant No.CXLX13_034]
文摘This paper examines the temporal change and spatial variation of population pressure on the ecological environment in China.We have collected sufficient data from the statistical yearbooks of 31 provincial administrative areas in 1990,1995,2000,2005,and 2010.Using a geographic information system(GIS) and relevant models,we analyzed the trend of the population pressure on ecological environment and the change of the gravity center of ecological environment quality.We conclude that:(1) generally,population pressure on the ecological environment in China was becoming higher during1990-2010,especially in some areas where the population and environment were in serious imbalance and the ecological environment experienced severe pollution;(2) during a certain period,population pressure on the ecological environment was becoming lower in some areas,but the ecological environment was getting worse;(3) the areas with super-high population pressure on the ecological environment were Beijing,Tianjin,and Shanghai;(4) the gravity center of population pressure on the ecological environment and the center of ecological environment quality move differently during the study time period,but the general trend was similar- both of them were moving from west to east.Based on the analysis,this paper also provides some policy suggestions on the control of ecological environment quality.
基金supported by the National Basic Research Program of China(973 Program)[grant number 2015CB954102]the National Natural Science Foundation of China[grant number41305095],[grant number 41175064]
文摘A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
基金Supported by the National Natural Science Foundation of China(NO.51305344)。
文摘In this paper,we investigate the regularity criterion via the pressure of weak solutions to the micropolar fluid equations in three dimensions.We obtain that for 0<α<1 if p€L^(2/a)(0,T;B^α∞,∞),then the weak solution(u,ω)is regular on(0,T).
文摘Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile en- ergy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Sim- ulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Exper- iments also support this evidence.
基金The work was supported by the Youth Science Fund Project approved by the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant 2020237in part by the National Natural Science Foundation of China under Grant 4170121.
文摘Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters are still less clear.On three similar east-west orientated streets with different degrees of tree cover-low(13%),medium(35%),and high(75%),urban microclimatic parameters and human physiological indices for six male students were simultaneously measured on three cloudless days in summer 2018.The results show that the differences in tree cover were predominant in influencing urban thermal environment and comfort.The street with the highest tree cover had significantly lower physiological equivalent temperature(PET) and more comfortable than the other two streets.The frequency of strong heat stress(PET> 35℃) was 64%,11 %,and 0%,respectively,for streets with low,medium,and high tree cover.For the six male university students,human physiological indices varied greatly across the three streets with different tree cover.Systolic blood pressure,diastolic blood pressure,and pulse rate increased with decreasing tree cover.The results also suggest that urban thermal environment and comfort had considerable impact on human physiological parameters.Our study provides reasons for urban planners to plant trees along streets to improve the thermal environment and promote urban sustainability.
基金the Major Science and Technology Project of Southwest Oil and Gas Field Company(2022ZD01-02).
文摘Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.
文摘Reducing the linear system of two first order equilibrium equations involving normal stress σ(ρ,θ) and shearing stress v(ρ,θ), by elimination, to two decoupled second order equations in σ and v, we find that, for pressure only case, v(ρ,θ) vanishes in the half space. Consequently, the second order equation in σ can be simplified. In the language of linear system analysis, the medium(system) function, characterizing the mechanical behavior of a particulate medium in pressure only case, is obtained from the simplified second order equation ( 2 ρ+ 2 θ)σ(ρ,θ)=0 and can be inverted to give impulse reponse explicitly. Thus, response σ α(ρ,θ) may be computed directly from input, i.e., the surface pressure φ α(ρ) , by integration. Some explicit formulas for transmission problems, including response to input of strip linearly increasing pressure, are given in the paper.
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
文摘In order to predict the surge pressure caused in the horizontal well drilling process, a new simple and applicable method has been established. It is based on the general theory of hydrostatic drilling fluid mechanics, and specifically described the flowing physical model towards surge pressure in horizontal well annulus, taking the effect of string eccentricity on the flowing law of drilling fluid into consideration. According to the constitutive equation of casson-mode under one-dimensional steady flow and the equations of annular flow rate under different drill string working conditions, this paper introduced the flow rate computation models of axial laminar flow in eccentric annulus apply to horizontal well, of which the numerical model was calculated by the program called Mathematica, ultimately, a new model for surge pressure prediction towards each interval in horizontal well was put forward. Application examples indicated that it can solve questions easily and precisely, which presents important meaning of guidance to the safety control while horizontal well drilling.
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.
基金National Natural Science Foundation of China Under Grant No.50309005National Key Basic Research and Development Program Under Grant No.2002CB412709
文摘Wave reflection and refraction in layered media is a topic closely related to seismology,acoustics,geophysics and earthquake engineering.Analytical solutions for wave reflection and refraction coefficients in multi-layered media subjected to P wave incidence from the elastic half-space are derived in terms of displacement potentials.The system is composed of ideal fluid,porous medium,and underlying elastic solid.By numerical examples,the effects of porous medium and the incident wave angle on the dynamic pressures of ideal fluid are analyzed.The results show that the existence of the porous medium,especially in the partially saturated case,may significantly affect the dynamic pressures of the overlying fluid.
基金Program for New Century Excellent Talents in University Under Grant No. NCET-05-0248the Key Program for Applied Basic Research of Tianjin Municipality Under Grant No. 07JCZDJC10100
文摘This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.
基金supported by National Natural Science Foundation of China (No. 51577011)
文摘In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.
文摘Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.
基金Project supported by the National Natural Science Foundation of China (Grant No:50274019) the Natural Science Foundation of Heilongjiang Province (Grant No:A200501)
文摘In this article, the governing equations for the unsteady flow of viscoelastic fluid in the eccentric annulus with the inner cylinder reciprocating axially and the expression of the pressure distribution on the wall of the inner cylinder of the annulus are established and derived, respectively, under the bipolar coordinate system. The equations and the expression are solved and calculated numerically using the finite difference method, respectively. The curves of the pressure distribution on the wall of the inner cylinder of the aqueous solution of Hydrolyzed Polyacrylamide (HPAM) are plotted and the influences of annular eccentricity, stroke, and stroke frequency on the pressure distribution are analyzed.