To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment...To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is prese...An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is presented in this paper which is used to determine the seepage path within the grey water dam, and determine the dimensions of the dam components. The hydraulic equation model also helps in avoiding soil piping problems by keeping the phreatic line within the grey water dam. Vegetables are planted around the surface of the dam as a reuse option while helping recycling of water in the form of evapotranspiration. A successful pilot trial of this dam was run in Mnyamatsini area in Swaziland which can accept grey water from multiple households.展开更多
The installation of a purification unit since 2008 in the village of Thiakhar has improved the physico-chemical and bacteriological quality of the water supply. However about 55% of the raw water comes out of the unit...The installation of a purification unit since 2008 in the village of Thiakhar has improved the physico-chemical and bacteriological quality of the water supply. However about 55% of the raw water comes out of the unit as discharges (approximately 14 m3 per day) highly concentrated in fluoride and chloride ions. Based on historical samples, we find that the volumes of water consumed together with the volumes of water discharged are increasingly significant from year to year. The storage of waste water is carried out in a septic tank connected to a leaking cesspool sink. Significant excesses of these discharges are visible on the site and a flow of concentrate is observed creating a puddle of water that attracts birds and straying cattle. The study describes the following substantial impacts on the natural and human environment: 1) contamination of groundwater, 2) soil salinization 3), impact on flora and fauna, 4) impact on health. The study concludes by identifying measures to mitigate the negative impacts related to the discharges and by proposing alternative solution.展开更多
[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized...[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized and analyzed. Considering the ecological purification in north- ern Jiangsu, the occurrence and prevention of filamentous algae in water, the method to prevent filamentous algae in polluted water was discussed. [ Result] The results showed that by measures of improving planting density, regular harvesting, and water flow state control before the filamentous algae blooming period, together with improving local pH value, light interference and ecological control during the blooming period, can effectively control the filamentous algae blooming. [ Condusion] The study of the happening mechanism of filamentous algae provided theoretical references and the technical basis in the work of filamentous algae prevention and control.展开更多
Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS ...Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS pollution such as terrain, precipitation, and vegetation type in mountainous regions show clear spatial heterogeneity. Consequently, the management systems required for NPS pollution in mountainous regions are complex. In this study, we developed a framework to estimate and map the treatment costs for NPS pollution in mountainous regions and applied this method in Baoxing County, a typical mountainous county in Sichuan Province of southwest China. The export levels of total nitrogen(TN) and total phosphorus(TP) in Baoxing County were estimated using the water purification model in InVEST(Itegrated Valuation of Ecosystem Services and Tradeoffs) tool. NPS pollutant treatment costs were calculated based on the level of pollutants exports, water yield, water quality targets, and treatment costs of NPS pollutants per unit mass. The results show that at the watershed level the amounts of TN and TP exported in Baoxing County were below threshold limits. However, at the sub-watershed level, TN and TP excesses of 291.64 and 2.96 tons per year were found, respectively, with mean TN and TP treatment costs of 6.58 US$/hm^2 and 0.35 US$/hm^2. Appraising pollution treatment cost intuitively reflects the overall expenditure in NPS pollution reduction from an economic perspective. This study provides a foundation for the implementation of Payment for Ecosystem Service(PES) and the prevention and control of NPS pollution.展开更多
Kuwait has recently implemented a vigorous campaign that aims to reclaim and reuse all treated wastewater in an at- tempt to alleviate water scarcity problem and to preserve seawater quality. This paper assesses the p...Kuwait has recently implemented a vigorous campaign that aims to reclaim and reuse all treated wastewater in an at- tempt to alleviate water scarcity problem and to preserve seawater quality. This paper assesses the present status of wastewater treatment, reclamation and reuse in Kuwait, and discusses the impact of wastewater reuse on the amounts of pollutants discharged into the sea. Through analysis of the historical records of the wastewater treatment plants, it has been found that reuse of reclaimed wastewater in Kuwait has greatly reduced the amounts of pollutants discharged into the sea. Results showed that more than 50% reduction in volumes of wastewater discharged into the sea had been achieved from year 2000 to year 2010. However, this study has predicted that the amounts of wastewater discharged into the sea will start increasing again by the year 2020 due to shortages of storage capacity for reclaimed wastewater and due to the limitation of wastewater reuse applications to basically agricultural and landscape irrigations. In contrary, the on-going works and future plans of the Ministry of Public Works (MPW) are expected to overcome this problem and lead to a zero discharge of wastewater into the sea.展开更多
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ...To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.展开更多
Based on the statistical data related to water pollution in recent years, this paper firstly describes in detail the current status of water pollution and water quality in rivers, lakes, reservoirs, groundwater and co...Based on the statistical data related to water pollution in recent years, this paper firstly describes in detail the current status of water pollution and water quality in rivers, lakes, reservoirs, groundwater and coastal waters in China, then makes a comprehensive analysis on future trends of water pollution in China. The authors hold that the economic power, technology level and management level have determinative influences on the current status and future trends of water pollution. At last, this paper discusses briefly the policies and measures for preventing and controlling water pollution in the light of the national conditions.展开更多
Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their charac...Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their characteristics applicable for treatment and control of water eutrophication from the aspects of physics, chemistry, biochemistry and environmental factors regulation, and discusses the application and development trend for relevant technologies.展开更多
Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,...Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.展开更多
Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electrom...Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms takes place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators展开更多
The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and ...The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and high efficiency is one of the important way to speed up the steps of wastewater treatment.This paper elucidated the principal and charactertics of the resourceful ecological treatment of wastewater. Asuccessful example of resourceful ecological land treatment of wastewater was given. The key points and therelative policies concerning the further development of resourceful ecological treatment of wastewater as asets of technologies have been suggested.展开更多
Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easi...Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg 1-1 was treated, and the removal rate was found to reach 88.96%.展开更多
The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water enviro...The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water environment. The reuse of wastewater could not only reduce the discharge of pollutants,but it could also increase the consumption of eco-environmental water. Therefore the reuse of wastewater is an important approach to improve the water environmental quality. Combined with the formulation process of Regulations of Beijing on Prevention and Control of Water Pollution,the current situations of prevention and control of water pollution in Beijing,the discharge of pollutant,water environmental quality,the population and economic development and water resources and so on were analyzed. And the bottlenecks that restricted the improvement of water environmental quality were found. And the necessity of solving the control of water pollution by reusing the wastewater and ensuring the consumption of eco-environmental water was analyzed from the perspective of the control of water pollution. And some legislative countermeasures were put forward,which provided new ideas for solving the problem of the prevention and control of water pollution and improving the water environmental quality. It was of important reference values for local governments( especially water-deficient regions) to make relative polices or plans of water pollution control and water environmental protection.展开更多
It is true that the world we have today is not the world we use to know. The Covid-19 pandemic has paralyzed all sector, hence the need for safety and enabling environment for mankind is of high importance. Adsorption...It is true that the world we have today is not the world we use to know. The Covid-19 pandemic has paralyzed all sector, hence the need for safety and enabling environment for mankind is of high importance. Adsorption technology is far the best and cheapest treatment technology for water and has extensively proven its worth for the uptake of micro-pollutant from surface, ground and water which are the major channels of home water. Over the years activated carbon is considered as the most common and universally used adsorbent for the eradication of different types of micro-pollutants from water. The contamination of surface water by micro-pollutant is a potential threat for the production of high quality and safe drinking water. Adsorption operation onto granulated activated carbon (GAC) in fixed-bed filters is often applied as a remedying step in the synthesis of safe and drinkable water. Activated carbon actively tends to act as a carrier material for a thin usually resistant layer of microorganisms (mostly bacteria) that forms on the coat of various surfaces (biofilm), hence biological simplification can be an alternative removal approach that can be adopted in granulated activated carbon filters. To evaluate the capacity of biofilm to biologically simplify micro-pollutants, it is very imperative to distinguish adsorption from biological simplification (biodegradation) as a removal mechanism. Experiment was carried out under the operating condition of a temperature range of 6?C to 20?C with biologically activated and autoclaved GAC to assess the biological simplification by the biofilm adsorbed on the GAC surface. Five micro-pollutants were selected as model compounds, of which some of them were biologically simplified by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption. Conclusively, comparison was made on the adsorption capacity of granulated activated carbon used for more than 50,000 beds.展开更多
Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the fu...Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the future.For this reason,this paper reviewed the characteristics of pond aquaculture tail water,the sources of pollutants in intensive aquaculture tail water,the important parameters in the water body that affect the growth of cultured organisms,and the water treatment methods in the process of aquaculture,and prospected from the technical level and industrial policy level,hoping to accumulate data for promoting the green development of aquaculture and cleaner production.展开更多
Although drinking water is readily available in Benin, its quality presents a public health concern. The district of Ahomadégbé in the commune of Lalo is characterized by several artesian wells. Unfortunatel...Although drinking water is readily available in Benin, its quality presents a public health concern. The district of Ahomadégbé in the commune of Lalo is characterized by several artesian wells. Unfortunately, anthropogenic factors negatively affect the drinking water quality in this area. The aim of this research was to study the microbiological quality of drinking water in the Ahomadégbé district, and to review household water treatment methods employed by the local population. Thirty-five water samples were taken—at water collection points, at selected points along the water transportation system and from water storage facilities, and microbiological parameters were measured. Qualitative data were collected via in-depth interviews with key informants regarding local household water treatment methods. Results reveal that there is a significant degree of microbiological pollution of drinking water in this district, particularly during the water transportation and storage stages where microbiological pollution exceeds levels approved by the World Health Organization. Local residents are familiar with several household water treatment methods. However, these methods are inconsistently applied, which limits their effectiveness. In addition to improving the quality of the drinking water resource itself, it is important to set up interventions relating to water treatment methods in local households.展开更多
This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development o...This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.展开更多
In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirem...In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.展开更多
基金supported by the National Natural Science Foundation of China(52370041)National Natural Science Foundation of China(21976134 and 21707104)State Key Laboratory of Pollution treatment and Resource Reuse Foundation(NO.PCRRK21001).
文摘To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is presented in this paper which is used to determine the seepage path within the grey water dam, and determine the dimensions of the dam components. The hydraulic equation model also helps in avoiding soil piping problems by keeping the phreatic line within the grey water dam. Vegetables are planted around the surface of the dam as a reuse option while helping recycling of water in the form of evapotranspiration. A successful pilot trial of this dam was run in Mnyamatsini area in Swaziland which can accept grey water from multiple households.
文摘The installation of a purification unit since 2008 in the village of Thiakhar has improved the physico-chemical and bacteriological quality of the water supply. However about 55% of the raw water comes out of the unit as discharges (approximately 14 m3 per day) highly concentrated in fluoride and chloride ions. Based on historical samples, we find that the volumes of water consumed together with the volumes of water discharged are increasingly significant from year to year. The storage of waste water is carried out in a septic tank connected to a leaking cesspool sink. Significant excesses of these discharges are visible on the site and a flow of concentrate is observed creating a puddle of water that attracts birds and straying cattle. The study describes the following substantial impacts on the natural and human environment: 1) contamination of groundwater, 2) soil salinization 3), impact on flora and fauna, 4) impact on health. The study concludes by identifying measures to mitigate the negative impacts related to the discharges and by proposing alternative solution.
文摘[ Objective ] The aim was to study the influence of filamentous algae on the process of water ecological purification. [ Method ] The occurrence mechanism of filamentous algae and its ecological system were summarized and analyzed. Considering the ecological purification in north- ern Jiangsu, the occurrence and prevention of filamentous algae in water, the method to prevent filamentous algae in polluted water was discussed. [ Result] The results showed that by measures of improving planting density, regular harvesting, and water flow state control before the filamentous algae blooming period, together with improving local pH value, light interference and ecological control during the blooming period, can effectively control the filamentous algae blooming. [ Condusion] The study of the happening mechanism of filamentous algae provided theoretical references and the technical basis in the work of filamentous algae prevention and control.
基金sponsored by National Natural Science Foundation of China (Grant Nos. 41371539)Guangxi Natural Science Foundation Program (Grant Nos. 2018GXNSFBA138026)Guangxi Young and Middle-aged University Teachers’ Scientific Research Ability Enhancement Project (Grant Nos. 2018KY0360)
文摘Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS pollution such as terrain, precipitation, and vegetation type in mountainous regions show clear spatial heterogeneity. Consequently, the management systems required for NPS pollution in mountainous regions are complex. In this study, we developed a framework to estimate and map the treatment costs for NPS pollution in mountainous regions and applied this method in Baoxing County, a typical mountainous county in Sichuan Province of southwest China. The export levels of total nitrogen(TN) and total phosphorus(TP) in Baoxing County were estimated using the water purification model in InVEST(Itegrated Valuation of Ecosystem Services and Tradeoffs) tool. NPS pollutant treatment costs were calculated based on the level of pollutants exports, water yield, water quality targets, and treatment costs of NPS pollutants per unit mass. The results show that at the watershed level the amounts of TN and TP exported in Baoxing County were below threshold limits. However, at the sub-watershed level, TN and TP excesses of 291.64 and 2.96 tons per year were found, respectively, with mean TN and TP treatment costs of 6.58 US$/hm^2 and 0.35 US$/hm^2. Appraising pollution treatment cost intuitively reflects the overall expenditure in NPS pollution reduction from an economic perspective. This study provides a foundation for the implementation of Payment for Ecosystem Service(PES) and the prevention and control of NPS pollution.
文摘Kuwait has recently implemented a vigorous campaign that aims to reclaim and reuse all treated wastewater in an at- tempt to alleviate water scarcity problem and to preserve seawater quality. This paper assesses the present status of wastewater treatment, reclamation and reuse in Kuwait, and discusses the impact of wastewater reuse on the amounts of pollutants discharged into the sea. Through analysis of the historical records of the wastewater treatment plants, it has been found that reuse of reclaimed wastewater in Kuwait has greatly reduced the amounts of pollutants discharged into the sea. Results showed that more than 50% reduction in volumes of wastewater discharged into the sea had been achieved from year 2000 to year 2010. However, this study has predicted that the amounts of wastewater discharged into the sea will start increasing again by the year 2020 due to shortages of storage capacity for reclaimed wastewater and due to the limitation of wastewater reuse applications to basically agricultural and landscape irrigations. In contrary, the on-going works and future plans of the Ministry of Public Works (MPW) are expected to overcome this problem and lead to a zero discharge of wastewater into the sea.
文摘To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.
文摘Based on the statistical data related to water pollution in recent years, this paper firstly describes in detail the current status of water pollution and water quality in rivers, lakes, reservoirs, groundwater and coastal waters in China, then makes a comprehensive analysis on future trends of water pollution in China. The authors hold that the economic power, technology level and management level have determinative influences on the current status and future trends of water pollution. At last, this paper discusses briefly the policies and measures for preventing and controlling water pollution in the light of the national conditions.
基金Supported by the Project for Commission of Science and Technology of Chaoyang District in Beijing Municipality(KC1105)
文摘Eutrophication is one of the important reasons for water pollution and is also the problem for water pollution treatment at home and abroad. This article takes an overview on various technical methods and their characteristics applicable for treatment and control of water eutrophication from the aspects of physics, chemistry, biochemistry and environmental factors regulation, and discusses the application and development trend for relevant technologies.
基金supported by the National Natural Science Foundation of China(51962001,32260292)the National Key Research&Development Projects(2020YFC1522200)the Gansu Provincial Science and Technology Plan Project(20JR5RA051,21YF1FF371).
文摘Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.
文摘Man made activities are changing environment of our planet earth.Various methods are used to reduce the environmental pollution.In this paper the methods of air/water/soil pollution mitigation/reduction using electromagnetic fields is discussed.Air/water/soil contains ions and the energy transfer for living organisms takes place by ion exchange processes.Ions are affected by electric/magnetic fields.Many investigators
文摘The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and high efficiency is one of the important way to speed up the steps of wastewater treatment.This paper elucidated the principal and charactertics of the resourceful ecological treatment of wastewater. Asuccessful example of resourceful ecological land treatment of wastewater was given. The key points and therelative policies concerning the further development of resourceful ecological treatment of wastewater as asets of technologies have been suggested.
基金supported by National Natural Science Foundation of China (51577011)
文摘Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg 1-1 was treated, and the removal rate was found to reach 88.96%.
文摘The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water environment. The reuse of wastewater could not only reduce the discharge of pollutants,but it could also increase the consumption of eco-environmental water. Therefore the reuse of wastewater is an important approach to improve the water environmental quality. Combined with the formulation process of Regulations of Beijing on Prevention and Control of Water Pollution,the current situations of prevention and control of water pollution in Beijing,the discharge of pollutant,water environmental quality,the population and economic development and water resources and so on were analyzed. And the bottlenecks that restricted the improvement of water environmental quality were found. And the necessity of solving the control of water pollution by reusing the wastewater and ensuring the consumption of eco-environmental water was analyzed from the perspective of the control of water pollution. And some legislative countermeasures were put forward,which provided new ideas for solving the problem of the prevention and control of water pollution and improving the water environmental quality. It was of important reference values for local governments( especially water-deficient regions) to make relative polices or plans of water pollution control and water environmental protection.
文摘It is true that the world we have today is not the world we use to know. The Covid-19 pandemic has paralyzed all sector, hence the need for safety and enabling environment for mankind is of high importance. Adsorption technology is far the best and cheapest treatment technology for water and has extensively proven its worth for the uptake of micro-pollutant from surface, ground and water which are the major channels of home water. Over the years activated carbon is considered as the most common and universally used adsorbent for the eradication of different types of micro-pollutants from water. The contamination of surface water by micro-pollutant is a potential threat for the production of high quality and safe drinking water. Adsorption operation onto granulated activated carbon (GAC) in fixed-bed filters is often applied as a remedying step in the synthesis of safe and drinkable water. Activated carbon actively tends to act as a carrier material for a thin usually resistant layer of microorganisms (mostly bacteria) that forms on the coat of various surfaces (biofilm), hence biological simplification can be an alternative removal approach that can be adopted in granulated activated carbon filters. To evaluate the capacity of biofilm to biologically simplify micro-pollutants, it is very imperative to distinguish adsorption from biological simplification (biodegradation) as a removal mechanism. Experiment was carried out under the operating condition of a temperature range of 6?C to 20?C with biologically activated and autoclaved GAC to assess the biological simplification by the biofilm adsorbed on the GAC surface. Five micro-pollutants were selected as model compounds, of which some of them were biologically simplified by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption. Conclusively, comparison was made on the adsorption capacity of granulated activated carbon used for more than 50,000 beds.
基金Supported by China Agriculture Research System of MOF and MARA(CARS-46)Project of Kunshan Yangcheng Lake Crab Industrial Research Institute.
文摘Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the future.For this reason,this paper reviewed the characteristics of pond aquaculture tail water,the sources of pollutants in intensive aquaculture tail water,the important parameters in the water body that affect the growth of cultured organisms,and the water treatment methods in the process of aquaculture,and prospected from the technical level and industrial policy level,hoping to accumulate data for promoting the green development of aquaculture and cleaner production.
文摘Although drinking water is readily available in Benin, its quality presents a public health concern. The district of Ahomadégbé in the commune of Lalo is characterized by several artesian wells. Unfortunately, anthropogenic factors negatively affect the drinking water quality in this area. The aim of this research was to study the microbiological quality of drinking water in the Ahomadégbé district, and to review household water treatment methods employed by the local population. Thirty-five water samples were taken—at water collection points, at selected points along the water transportation system and from water storage facilities, and microbiological parameters were measured. Qualitative data were collected via in-depth interviews with key informants regarding local household water treatment methods. Results reveal that there is a significant degree of microbiological pollution of drinking water in this district, particularly during the water transportation and storage stages where microbiological pollution exceeds levels approved by the World Health Organization. Local residents are familiar with several household water treatment methods. However, these methods are inconsistently applied, which limits their effectiveness. In addition to improving the quality of the drinking water resource itself, it is important to set up interventions relating to water treatment methods in local households.
文摘This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.
文摘In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.