期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Number of primitive elements of field extension GF(p^(nm))/GF(p^n)
1
作者 严质彬 游宏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期56-58,共3页
Presents the counting of the counts number of primitive elements of finite dimensional field extension GF(p nm )/GF(p n) using (1) the principle of inclusion exclusion, (2) the Mbius inversion, (3) the Euler ... Presents the counting of the counts number of primitive elements of finite dimensional field extension GF(p nm )/GF(p n) using (1) the principle of inclusion exclusion, (2) the Mbius inversion, (3) the Euler  function, and the new identity obtained ∑t|p nm-1 , t p nmq j -1(t)=p nm -∑jp nmq j +∑j 1<j 2p nmqj 1qj 2 -…+(-1) kp nmq 1…q k  where, m>1, p is a prime, (·) is Euler function, and q 1,…,q k are the all distinct prime divisors of m. 展开更多
关键词 Euler function field extension the principle of inclusion exclusion Mbius inversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部