A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of min...A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.展开更多
From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given....From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.展开更多
The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic...The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.展开更多
The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interact...The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interacting masses when both the interacting masses are more than a certain limiting mass. This strong potential energy results when both the interacting masses are less than the limiting mass. The potential energy is applied to two more systems here and out of which one nucleus is in the middle of periodic table.展开更多
Pyramids,symbols of the Ancient Egyptian civilization,are visited by tourists and studied by researchers from all around the world.However,the techniques used by Ancient Egyptians to construct the pyramid,specifically...Pyramids,symbols of the Ancient Egyptian civilization,are visited by tourists and studied by researchers from all around the world.However,the techniques used by Ancient Egyptians to construct the pyramid,specifically,how such a tall structure could have been constructed from huge blocks of stone with the limited productive forces at the time,remains a mystery to the world.Though numerous theories,such as the use of ramps,levers,pulleys,fluid buoyancy,and cast-in-place concrete,have been proposed in academia,no consensus has been reached to date.Based on mechanical principles and the productive forces available at the time,the famous Pyramid of Khufu is used as a case study in this paper to propose a theory of pit-aided construction.The main steps include the digging of the pit,the transportation of stone blocks into the pit,the layer-by-layer construction,and the layer-by-layer filling of soil until the top of the pyramid is completed.The main idea of the pit-aided construction was to use the self-weight of the stone material to achieve the transportation of stone blocks by converting potential energy to kinetic energy,thereby avoiding the large amounts of work that must be done to elevate the huge blocks of stone.The proposed theory of pit-aided construction is consistent with the cultural custom of burial that is associated with tomb construction,namely laying the deceased to rest through burial,and is also consistent with the productive forces available in Ancient Egypt at the time.展开更多
According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam e...According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.展开更多
The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers ...The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.展开更多
The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximati...The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximation solution was obtained from the minimum potential energy principle. The numerical results for the growth of the cavitation and stresses along the edge of the cavitation were discussed. In addition, the stress concentration phenomenon was considered.展开更多
The principle of stationary mutual potential energy, which was introduced by Shield and Prager, can be considered as an extension of the principle of minimum potential energy from one-loading system to two-loadlng sys...The principle of stationary mutual potential energy, which was introduced by Shield and Prager, can be considered as an extension of the principle of minimum potential energy from one-loading system to two-loadlng system. By this stationary principle, we can obtain the necessary and sufficient condition of optimality for structural design.展开更多
The analyses of finite deformation and stress for a hyperelastic rectangular plate with some voids under an uniaxial extension were conducted. The governing differential equations were given from the incompressibility...The analyses of finite deformation and stress for a hyperelastic rectangular plate with some voids under an uniaxial extension were conducted. The governing differential equations were given from the incompressibility condition of the material. The solution was approximately obtained from the minimum potential energy principle. The growth of voids was discussed. One can see that an initial central circular-cylinder void becomes an elliptic-cylinder void, but an initial non-centeral circular-cylinder void becomes an elliptic-like cylinder void and the center of void has a shift. The stress distributions along the edges of voids were given and the phenomenon of stress concentration was observed. The influences of the distribution manner and size of voids, as well as the distance between them on the growth of voids were analyzed.展开更多
Projectile perforation of concrete slabs will produce numerous concrete fragments on the rear face of the concrete slabs. These concrete fragments will cause serious secondary damage to the indoor personnel and equipm...Projectile perforation of concrete slabs will produce numerous concrete fragments on the rear face of the concrete slabs. These concrete fragments will cause serious secondary damage to the indoor personnel and equipment of protective structures.Accurately evaluating the damage area of concrete slabs is an important problem. Therefore, a theoretical model of a rigid projectile perforation of concrete slabs is constructed using the energy method in this paper. In this model, a new shear failure method is proposed to calculate the energy consumption of the shear formation by combining with the von-Mises failure criterion and failure strain. Based on the energy conservation and principle of minimum potential energy, explicit equations for the perforation performance are formulated. The theoretical predictions agree well with the experimental results. Furthermore,experiments on a high-speed projectile normal perforation of concrete are carried out to verify the accuracy of the corresponding theoretical prediction.展开更多
In this article, we apply the Generalized Uncertainty Principle (GUP), which is consistent with quantum gravity theories to an elementary particle in a finite potential well, and study the quantum behavior in this s...In this article, we apply the Generalized Uncertainty Principle (GUP), which is consistent with quantum gravity theories to an elementary particle in a finite potential well, and study the quantum behavior in this system. The generalized Hamiltonian contains two additional terms, which are proportional to ap3 (the result of the maximum momentum assumption) and a2p4 (the result of the minimum length assumption), where a - 1/MpIc is the GUP parameter. On the basis of the work by Ali et al., we solve the generaiized Schrodinger equation which is extended to include the a2 correction term, and find that the length L of the finite potentiai well must be quantized. Then a generalization to the double-square-well potential is discussed. The result shows that all the measurable lengths especially the distance between the two potential wells are quantized in units of aolp1 in GUP scenario.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50406025).
文摘A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.
文摘From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.
基金Project (No. 50874089) is supported by the National Natural Science Foundation of ChinaProject (No. 20096121110002) by the College of Doctoral Foundation of the Ministry of Education the Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 2010JK692)
文摘The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.
文摘The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interacting masses when both the interacting masses are more than a certain limiting mass. This strong potential energy results when both the interacting masses are less than the limiting mass. The potential energy is applied to two more systems here and out of which one nucleus is in the middle of periodic table.
文摘Pyramids,symbols of the Ancient Egyptian civilization,are visited by tourists and studied by researchers from all around the world.However,the techniques used by Ancient Egyptians to construct the pyramid,specifically,how such a tall structure could have been constructed from huge blocks of stone with the limited productive forces at the time,remains a mystery to the world.Though numerous theories,such as the use of ramps,levers,pulleys,fluid buoyancy,and cast-in-place concrete,have been proposed in academia,no consensus has been reached to date.Based on mechanical principles and the productive forces available at the time,the famous Pyramid of Khufu is used as a case study in this paper to propose a theory of pit-aided construction.The main steps include the digging of the pit,the transportation of stone blocks into the pit,the layer-by-layer construction,and the layer-by-layer filling of soil until the top of the pyramid is completed.The main idea of the pit-aided construction was to use the self-weight of the stone material to achieve the transportation of stone blocks by converting potential energy to kinetic energy,thereby avoiding the large amounts of work that must be done to elevate the huge blocks of stone.The proposed theory of pit-aided construction is consistent with the cultural custom of burial that is associated with tomb construction,namely laying the deceased to rest through burial,and is also consistent with the productive forces available in Ancient Egypt at the time.
基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20070247002)
文摘According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11074233) the National Basic Research Program of China (No.2012CB215405), and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110038).
文摘The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.
文摘The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximation solution was obtained from the minimum potential energy principle. The numerical results for the growth of the cavitation and stresses along the edge of the cavitation were discussed. In addition, the stress concentration phenomenon was considered.
文摘The principle of stationary mutual potential energy, which was introduced by Shield and Prager, can be considered as an extension of the principle of minimum potential energy from one-loading system to two-loadlng system. By this stationary principle, we can obtain the necessary and sufficient condition of optimality for structural design.
文摘The analyses of finite deformation and stress for a hyperelastic rectangular plate with some voids under an uniaxial extension were conducted. The governing differential equations were given from the incompressibility condition of the material. The solution was approximately obtained from the minimum potential energy principle. The growth of voids was discussed. One can see that an initial central circular-cylinder void becomes an elliptic-cylinder void, but an initial non-centeral circular-cylinder void becomes an elliptic-like cylinder void and the center of void has a shift. The stress distributions along the edges of voids were given and the phenomenon of stress concentration was observed. The influences of the distribution manner and size of voids, as well as the distance between them on the growth of voids were analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11390362&11521062)
文摘Projectile perforation of concrete slabs will produce numerous concrete fragments on the rear face of the concrete slabs. These concrete fragments will cause serious secondary damage to the indoor personnel and equipment of protective structures.Accurately evaluating the damage area of concrete slabs is an important problem. Therefore, a theoretical model of a rigid projectile perforation of concrete slabs is constructed using the energy method in this paper. In this model, a new shear failure method is proposed to calculate the energy consumption of the shear formation by combining with the von-Mises failure criterion and failure strain. Based on the energy conservation and principle of minimum potential energy, explicit equations for the perforation performance are formulated. The theoretical predictions agree well with the experimental results. Furthermore,experiments on a high-speed projectile normal perforation of concrete are carried out to verify the accuracy of the corresponding theoretical prediction.
基金Supported by National Natural Science Foundation of China under Grant Nos.10865003 and 11464005
文摘In this article, we apply the Generalized Uncertainty Principle (GUP), which is consistent with quantum gravity theories to an elementary particle in a finite potential well, and study the quantum behavior in this system. The generalized Hamiltonian contains two additional terms, which are proportional to ap3 (the result of the maximum momentum assumption) and a2p4 (the result of the minimum length assumption), where a - 1/MpIc is the GUP parameter. On the basis of the work by Ali et al., we solve the generaiized Schrodinger equation which is extended to include the a2 correction term, and find that the length L of the finite potentiai well must be quantized. Then a generalization to the double-square-well potential is discussed. The result shows that all the measurable lengths especially the distance between the two potential wells are quantized in units of aolp1 in GUP scenario.