期刊文献+
共找到198,320篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced Oxygen Reduction on Graphene via Y5Si3 Electride Substrate:a First-Principles Study 被引量:1
1
作者 Jing-jing Lin Hai-feng Lv Xiao-jun Wu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期649-654,735,共7页
Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substra... Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substrate provides a structure-intact strategy to enhance its chemical reactivity due to substrate-induced charge and interface effect.Here,we report the graphene deposited on one-dimensional electride Y5Si3 as an effective ORR catalyst in acidic media.Thermodynamic calculations suggest that depositing graphene on electride materials can facilitate the protonation of O2,which is the rate-determining step based on the four-electron reaction pathway and thus promote the ORR activity.Further electronic calculations reveal that low work function(3.5 eV),superior electrical conductivity and slight charge transfer from substrate to graphene result in the enhanced ORR performance of graphene.These findings shed light on the rational design of ORR catalysts based on graphitic materials and emphasize the critical role of substrates for energy-related electrochemical reactions. 展开更多
关键词 First-principles calculations GRAPHENE Oxygen reduced reduction ELECTRIDES
下载PDF
Surface rumples and band gap reductions of cubic BaZrO_3 (001) surface studied by means of first-principles calculations 被引量:2
2
作者 张超 王春雷 +3 位作者 李吉超 杨鲲 张艳飞 吴清早 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期274-280,共7页
Electronic properties of the (001) surface of cubic BaZrO3 with BaO and ZrO2 terminations have been studied using first-principles calculations. Surface structure, partial density of states, band structure and surfa... Electronic properties of the (001) surface of cubic BaZrO3 with BaO and ZrO2 terminations have been studied using first-principles calculations. Surface structure, partial density of states, band structure and surface energy have been obtained. We find that the largest relaxation appears in the first layer of atoms, and the relaxation of the BaO-terminated surface is larger than that of the ZrO2-terminated surface. The surface rumpling of the BaO-terminated surface is also larger than that of the ZrO2-terminated surface. Results of surface energy calculations reveal that the BaZrO3 surface is likely to be more stable than the PbZrO3 surface. 展开更多
关键词 SURFACE band gap BaZrO3 FIRST-principleS
下载PDF
Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles
3
作者 Linke Yu Fengyu Li +1 位作者 Jingxiang Zhao Zhongfang Chen 《Advanced Powder Materials》 2022年第3期99-109,共11页
In this study,we selected 10 Co-based double-atom catalysts(DACs)catalysts,namely CoMN_(6)-gra(OH)(M?Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn),and investigated their oxygen reduction reactions(ORR)catalytic performances with/with... In this study,we selected 10 Co-based double-atom catalysts(DACs)catalysts,namely CoMN_(6)-gra(OH)(M?Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn),and investigated their oxygen reduction reactions(ORR)catalytic performances with/without considering the magnetic coupling by means of density functional theory(DFT)calculations.It was found that CoNiN_(6)-gra(OH),CoCuN_(6)-gra(OH),and CoZnN_(6)-gra(OH)exhibit good catalytic activity of ORR(with low overpotentials of 0.33,0.34 and 0.23 V,respectively)when the magnetic coupling is considered.In particular,magnetic changes in CoMN_(6)-gra(OH)candidates play a vital role in their ORR catalytic activity.Interestingly,the d-band center can be utilized to well rationalize the ORR catalytic activity.This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts,and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions. 展开更多
关键词 First-principles calculations Double-atom catalysts Oxygen reduction reaction Magnetic coupling d-band center
下载PDF
Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study
4
作者 Yan-Ling Hu Hao-Ran Zhu Shi-Hao Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期140-149,共10页
It is important for environmental protection to search for catalysts with excellent performance and cost-effective to reduce SO2 by CO. In this work, using first-principles calculation, we have studied the catalytic p... It is important for environmental protection to search for catalysts with excellent performance and cost-effective to reduce SO2 by CO. In this work, using first-principles calculation, we have studied the catalytic performance of Au5Mn(M = Ni, Pd, Pt, Cu, Ag, Au; n = 1, 0,-1) clusters, and showed that, by giving a negative charge to the Au5M(M = Cu,Ag, Au, Pd) clusters, we could improve the selectivity of SO2 and avoid effectively catalyst CO poisoning simultaneously.At the same time, the catalytic reaction rate for the reduction of SO2 by CO with Au5M-(M = Cu, Ag, Au, Pd) clusters is greatly improved when the Au5M clusters are charged. These advantages can be well explained by the charge transfer between the clusters and adsorbed molecules, which means that we can effectively control the performance of the catalyst.The equilibrium structures of Au5Mn(M = Ni, Pd, Pt, Cu, Ag, Au; n = 1, 0,-1) clusters without or with adsorbed SO2 or CO molecule are also discussed, and the most stable geometrical structures of Aun5 M-ML(ML = SO2, CO, SO, and COS)can be explained very well by the match of orbitals symmetry and density of electron cloud through their frontier molecular orbitals. Considering the catalyst cost(Cu is much cheaper than Ag and Au), selectivity of SO2, and effectively avoiding the catalyst CO poisoning, we propose that Au5Cu-is an ideal catalyst for getting rid of SO2 and CO simultaneously. 展开更多
关键词 BIMETALLIC CLUSTERS catalyst FIRST-principleS electronic structure
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:8
5
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:4
6
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:2
7
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
Cu-Based Materials for Enhanced C_(2+) Product Selectivity in Photo-/Electro-Catalytic CO_(2) Reduction: Challenges and Prospects 被引量:1
8
作者 Baker Rhimi Min Zhou +2 位作者 Zaoxue Yan Xiaoyan Cai Zhifeng Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期25-66,共42页
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca... Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future. 展开更多
关键词 Photocatalytic CO_(2)reduction Cu-based materials Electrocatalytic CO_(2)reduction
下载PDF
The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction 被引量:1
9
作者 Jing Li Tingyu Lu +6 位作者 Yu Fang Guangyao Zhou Mingyi Zhang Huan Pang Jun Yang Yawen Tang Lin Xu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期338-349,共12页
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su... Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields. 展开更多
关键词 Co-based ELECTROCATALYSTS oxygen reduction reaction rectifying CONTACT Zn-air BATTERIES
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
10
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise reduction optimizing
下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction 被引量:2
11
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 Quantum efficiency Electronic structure Steric interaction Bridging sites CO_(2)reduction
下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
12
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
下载PDF
Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method 被引量:1
13
作者 Yi-Sheng Hao Zhen Wu +3 位作者 Shen-Shen Gao Rui Qiu Hui Zhang Jun-Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期200-215,共16页
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m... Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method. 展开更多
关键词 Monte Carlo Global variance reduction Reactor shielding Automatic importance sampling
下载PDF
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates 被引量:1
14
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)for stable photocatalytic CO_(2)reduction 被引量:1
15
作者 Yaqing Zhi Haoning Mao +5 位作者 Guangxing Yang Qiao Zhang Zhiting Liu Yonghai Cao Siyuan Yang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期104-112,共9页
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)... Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future. 展开更多
关键词 CO_(2)photocatalytic reduction PHOTOCATALYSIS Basic copper carbonate SELF-RECONSTRUCTION PHOTOCATALYST
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
16
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Atomically dispersed Mn-N_(x) catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction 被引量:1
17
作者 Guoyu Zhong Liuyong Zou +10 位作者 Xiao Chi Zhen Meng Zehong Chen Tingzhen Li Yongfa Huang Xiaobo Fu Wenbo Liao Shaona Zheng Yongjun Xu Feng Peng Xinwen Peng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期114-126,共13页
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst... Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications. 展开更多
关键词 carbon nanosheets ELECTROCATALYST metal-organic frameworks Mn-N_(4) oxygen reduction reaction Zn-air batteries
下载PDF
Preferentially selective extraction of lithium from spent LiCoO_(2)cathodes by medium-temperature carbon reduction roasting 被引量:2
18
作者 Daixiang Wei Wei Wang +6 位作者 Longjin Jiang Zhidong Chang Hualei Zhou Bin Dong Dekun Gao Minghui Zhang Chaofan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期315-322,共8页
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv... Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries. 展开更多
关键词 spent LiCoO_(2)cathodes medium-temperature carbon reduction lithium extraction priority crystal transformation macro-scopic transport resistance
下载PDF
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO_(2) reduction 被引量:1
19
作者 Rohini Subhash Kanase Getasew Mulualem Zewdie +7 位作者 Maheswari Arunachalam Jyoti Badiger Suzan Abdelfattah Sayed Kwang-Soon Ahn Jun-Seok Ha Uk Sim Hyeyoung Shin Soon Hyung Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期71-81,I0002,共12页
The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-b... The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes(GDE),and the effect of nitrogen(N)doping on the ECR activity of ZnO electrocatalysts was investigated.Initially,a ZnO nanosheet was prepared via the hydrothermal method,and nitridation was performed at different times to control the N-doping content.With an increase in the N-doping content,the morphological properties of the nanosheet changed significantly,namely,the 2D nanosheets transformed into irregularly shaped nanoparticles.Furthermore,the ECR performance of Zn O electrocatalysts with different N-doping content was assessed in 1.0 M KHCO_(3) electrolyte using a gas-diffusion electrode-based ECR cell.While the ECR activity increased after a small amount of N doping,it decreased for higher N doping content.Among them,the N:ZnO-1 h electrocatalysts showed the best CO selectivity,with a faradaic efficiency(FE_(CO))of 92.7%at-0.73 V vs.reversible hydrogen electrode(RHE),which was greater than that of an undoped Zn O electrocatalyst(FE_(CO)of 63.4%at-0.78 V_(RHE)).Also,the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h,with a partial current density of-92.1 mA cm^(-2).This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations,demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from(ⅰ)the optimized active sites lowering the free energy barrier for the rate-determining step(RDS),and(ⅱ)the modification of electronic structure enhancing the electron transfer rate by N doping. 展开更多
关键词 ZNO N-doped ZnO Gas-diffusion electrode CO Selectivity Electrochemical CO_(2)reduction
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
20
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部