The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concep...The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermodynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equations of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations instead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for further refinement of the physical model of ideal gas and the techniques for its statistical description.展开更多
以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后...以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后电流、瞬态恢复电压与新阴极表面电场强度分布。采用对比分析方法,研究各断口间瞬态恢复电压分配规律以及弧后介质恢复强度影响因素。研究结果表明:由于线路阻抗产生的瞬态恢复电压等因素使得各断口间开断电压及电弧能量分配不均,某一断口所受电压及电弧能量高于其他断口,金属蒸气初始密度大且弧后电流下降率较大,瞬态恢复电压上升速率更快,鞘层发展速度缓慢,新阴极表面场强较高,易发生重击穿从而导致断路器开断失败。在换流回路中采用较大电容以保证TRV合理分配,进而提高多断口直流真空断路器开断性能。展开更多
文摘The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermodynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equations of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations instead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for further refinement of the physical model of ideal gas and the techniques for its statistical description.
文摘以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后电流、瞬态恢复电压与新阴极表面电场强度分布。采用对比分析方法,研究各断口间瞬态恢复电压分配规律以及弧后介质恢复强度影响因素。研究结果表明:由于线路阻抗产生的瞬态恢复电压等因素使得各断口间开断电压及电弧能量分配不均,某一断口所受电压及电弧能量高于其他断口,金属蒸气初始密度大且弧后电流下降率较大,瞬态恢复电压上升速率更快,鞘层发展速度缓慢,新阴极表面场强较高,易发生重击穿从而导致断路器开断失败。在换流回路中采用较大电容以保证TRV合理分配,进而提高多断口直流真空断路器开断性能。