Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stres...Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.展开更多
The author considers the contact process on a branching plane Td×Z, which is the product of a regular tree Td and the line Z. It is shown that above the second critical point, the complete convergence theory holds.
An analytical algorithm was presented for the exact computation of the probability distribution of the project completion time in stochastic networks,where the activity durations are mutually independent and continuou...An analytical algorithm was presented for the exact computation of the probability distribution of the project completion time in stochastic networks,where the activity durations are mutually independent and continuously distributed random variables. Firstly,stochastic activity networks were modeled as continuous-time Markov process with a single absorbing state by the well-know method of supplementary variables and the time changed from the initial state to absorbing state is equal to the project completion time.Then,the Markov process was regarded as a special case of Markov skeleton process.By taking advantage of the backward equations of Markov skeleton processes,a backward algorithm was proposed to compute the probability distribution of the project completion time.Finally,a numerical example was solved to demonstrate the performance of the proposed methodology.The results show that the proposed algorithm is capable of computing the exact distribution function of the project completion time,and the expectation and variance are obtained.展开更多
Supported by a new generation of mobile devices, e-commerce is now in the process of being converted into m-commerce. While the traditional fixed PC access to the Internet continues to be important, the mobile access ...Supported by a new generation of mobile devices, e-commerce is now in the process of being converted into m-commerce. While the traditional fixed PC access to the Internet continues to be important, the mobile access appears to attract more people because of its flexibility. The purpose of this paper is to develop and analyze a mathematical model for capturing how e-commerce performance would be affected by the mobile access to the Internet, where the original paper by Sumita and Yoshii (2010) is extended for better reality. The traditional e-commerce via the fixed PC access is compared with m-commerce which accommodates both the fixed PC access and the mobile access. The distribution of the number of products purchased by time t and the distribution of the time required for selling K products are derived explicitly. Numerical examples are given for illustrating behavioral differences between m-commerce consumers and traditional e-commerce consumers.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
基金Project(50774090) supported by the National Natural Science Foundation of China
文摘Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.
基金Research was supported in part by Grant G1999075106 from the Ministry of Science and Technology of China.
文摘The author considers the contact process on a branching plane Td×Z, which is the product of a regular tree Td and the line Z. It is shown that above the second critical point, the complete convergence theory holds.
基金Project(10671212) supported by the National Natural Science Foundation of ChinaProject(20050533036) supported by the Specialized Research Found for the Doctoral Program Foundation of Higher Education of China
文摘An analytical algorithm was presented for the exact computation of the probability distribution of the project completion time in stochastic networks,where the activity durations are mutually independent and continuously distributed random variables. Firstly,stochastic activity networks were modeled as continuous-time Markov process with a single absorbing state by the well-know method of supplementary variables and the time changed from the initial state to absorbing state is equal to the project completion time.Then,the Markov process was regarded as a special case of Markov skeleton process.By taking advantage of the backward equations of Markov skeleton processes,a backward algorithm was proposed to compute the probability distribution of the project completion time.Finally,a numerical example was solved to demonstrate the performance of the proposed methodology.The results show that the proposed algorithm is capable of computing the exact distribution function of the project completion time,and the expectation and variance are obtained.
文摘Supported by a new generation of mobile devices, e-commerce is now in the process of being converted into m-commerce. While the traditional fixed PC access to the Internet continues to be important, the mobile access appears to attract more people because of its flexibility. The purpose of this paper is to develop and analyze a mathematical model for capturing how e-commerce performance would be affected by the mobile access to the Internet, where the original paper by Sumita and Yoshii (2010) is extended for better reality. The traditional e-commerce via the fixed PC access is compared with m-commerce which accommodates both the fixed PC access and the mobile access. The distribution of the number of products purchased by time t and the distribution of the time required for selling K products are derived explicitly. Numerical examples are given for illustrating behavioral differences between m-commerce consumers and traditional e-commerce consumers.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.