This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West...This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited.展开更多
Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional ob...Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.展开更多
The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A(AMSU-A) on the track prediction of Typhoon Megi(2010) was studied using the Weather Research and Forecasting(WRF) model and a hybr...The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A(AMSU-A) on the track prediction of Typhoon Megi(2010) was studied using the Weather Research and Forecasting(WRF) model and a hybrid ensemble threedimensional variational(En3DVAR) data assimilation(DA) system.The influences of tuning the length scale and variance scale factors related to the static background error covariance(BEC) on the track forecast of the typhoon were studied.The results show that,in typhoon radiance data assimilation,a moderate length scale factor improves the prediction of the typhoon track.The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts,even when the static BEC was carefully tuned to optimize its performance.When the hybrid DA was employed,the track forecast was significantly improved,especially for the sharp northward turn after crossing the Philippines,with the flow-dependent ensemble covariance.The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically.The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR.Additionally,for 24 h forecasts,the hybrid DA experiment with use of the full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels.展开更多
MetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilatio...MetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.展开更多
The data assimilation technique, known as 3DVAR, of the WRF mesoscale modeling system has been used in order to perform the impact analysis of meteorological data assimilation in the weather forecasts over the Rio Gra...The data assimilation technique, known as 3DVAR, of the WRF mesoscale modeling system has been used in order to perform the impact analysis of meteorological data assimilation in the weather forecasts over the Rio Grande do Sul State in Brazil. The consistency of the data assimilation has been analyzed by investigating and evaluating the model forecast results processed with and without data assimilations. Two different procedures of data assimilation have been conducted to perform the study. The forecasts of the accumulated rainfall model variable, spatially plotted over the model integration domains, have been compared and validated against the Tropical Rain Measuring Mission (TRMM) satellite based data, as well as with the Canguçu city meteorological radar reflectivity data. The comparison has been made considering the total amount of the accumulated rainfall predicted by the model against the automatic weather station data and most of the conducted processing presented compatible results. It has also been observed that, the inclusion of assimilated data enabled an improvement in the intensity as well as in the location of the main convective cell. The radar reflectivity field showed a significant performance in all processed experiments with data assimilation. However, for some regions, more significant obtained results have been shown to be the case in which the spectral radiances were assimilated, as compared with the case in which the spectral radiances were not included. The evaluation of the vertical atmospheric profiles of temperature and dew point temperature showed only a small impact of data assimilation. However, both simulations coherently presented the two vertical profiles, when compared with the observed profiles. In short, the study shows that, although the forecasts presented some inconsistencies in the evaluated results, the 3DVAR assimilation improves significantly the forecasting of the Weather WRF model.展开更多
Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (...Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.展开更多
Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images co...Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images commonly suffer from atmospheric effects,thereby limiting their use.In such a situation,atmospheric correction becomes a necessary pre-requisite for any further processing and accurate interpretation of spectra of different surface materials/objects.In the present study,two very advance atmospheric approaches i.e.QUAC and FLAASH have been applied on the hyperspectral remote sensing imagery.The spectra of vegetation,man-made structure and different minerals from the Gadag area of Karnataka,were extracted from the raw image and also from the QUAC and FLAASH corrected images.These spectra were compared among themselves and also with the existing USGS and JHU spectral library.FLAASH is rigorous atmospheric algorithm and requires various parameters to perform but it has capability to compensate the effects of atmospheric absorption.These absorption curves in any spectra play an important role in identification of the compositions.Therefore,the presence of unwanted absorption features can lead to wrong interpretation and identification of mineral composition.FLAASH also has an advantage of spectral polishing which provides smooth spectral curves which helps in accurate identification of composition of minerals.Therefore,this study recommends that FLAASH is better than QUAC for atmospheric correction and correct interpretation and identification of composition of any object or minerals.展开更多
To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radian...To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.展开更多
针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧...针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。展开更多
The Along-Track Scanning Radiometer (ATSR) onboard the European Remote Sensing satellite (ERS) is presently the only one available to provide quasi-simultaneous thermal infrared measurements at two view angles. Such d...The Along-Track Scanning Radiometer (ATSR) onboard the European Remote Sensing satellite (ERS) is presently the only one available to provide quasi-simultaneous thermal infrared measurements at two view angles. Such data represent an opportunity to explore the potential information on the directional observations in the thermal infrared region, in view of the preparation of a new generation of multi-angle satellite sensors. Based on the analysis of one ATSR image, the results of this work indicate that the magnitude of the directional effect on the brightness temperature (ground anisotropic radiance), although quite sensitive to errors in atmospheric conditions, may still be retrieved with acceptable uncertainty. In order to retrieve both vegetation and soil temperatures from directional brightness temperatures, it is shown that an appropriate description of the nature and content of the pixel is needed, otherwise this retrieval will be quite uncertain.展开更多
Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmosp...Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.展开更多
A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characterist...A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characteristic values--the general radiance level L,the visible-infrared radiation balance B and the band radiance variation vector (direction and speed) V were calculated.Then the 769 class units were sorted into 106 groups based on their natural characteristics.The means and standard deviations of L,B and V values for all the groups were calculated.The distributions of the 106 groups or the 769 units on the number axes of L,B and V,in the planes of L-B,L-V and B-V,and in the space of L-B-V were investigated.Finally,the typical numerical characteristics of the various ground features are discussed in consideration of their worldwide variations in the present paper.展开更多
The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/t...The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational(ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting(WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation.展开更多
Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cl...Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics param- eters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are ap- plied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind anal- ysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.展开更多
Based on the newly developed Weather Research and Forecasting model(WRF)and its three-dimensional variational data assimilation(3DVAR)system,this study constructed twelve experiments to explore the impact of direct as...Based on the newly developed Weather Research and Forecasting model(WRF)and its three-dimensional variational data assimilation(3DVAR)system,this study constructed twelve experiments to explore the impact of direct assimilation of different ATOVS radiance on the intensity and track simulation of super-typhoon Fanapi(2010)using a data assimilation cycle method.The result indicates that the assimilation of ATOVS radiance could improve typhoon intensity effectively.The average bias of the central sea level pressure(CSLP)drops to 18 hPa,compared to 42 hPa in the experiment without data assimilation.However,the influence due to different radiance data is not significant,which is less than 6hPa on average,implying limited improvement from sole assimilation of ATOVS radiance.The track issue is studied in the following steps.First,the radiance from the same sensor of different satellites could produce different effect.For the AMSU-A,NOAA-15 and NOAA-18,they produce equivalent improvement,whereas NOAA-16 produces slightly poor effect.And for the AMSU-B,NOAA-15 and NOAA-16,they produce equivalent and more positive effect than that provided by the AMSU-A.Second,the assimilation radiance from different sensors of the identical satellites could also produce different effect.The assimilation of AMSU-B produces the largest improvement,while the ameliorating effect of HIRS/3assimilation is inferior to that of AMSU-B assimilation,while the AMSU-A assimilation exhibits the poorest improvement.Moreover,the simultaneous assimilation of different radiance could not produce further improvement.Finally,the experiments of simultaneous assimilation radiance from multiple satellites indicate that such assimilation may lead to negative effect due to accumulative bias when adding various radiance data into the data assimilation system.Thus the assimilation of ATOVS radiance from a single satellite may perform better than that from two or three satellites.展开更多
The land surface temperature of Yola (latitude 9°11'N to 9°20'N and longitude 12°23'E to 12°33'E) North-eastern Nigeria was estimated using landsat-7 ETM+ satellite images. ...The land surface temperature of Yola (latitude 9°11'N to 9°20'N and longitude 12°23'E to 12°33'E) North-eastern Nigeria was estimated using landsat-7 ETM+ satellite images. ENVI 4.5 software, and Thermal band 6.2 were used for the estimation, land surface temperature, from Landsat-7 ETM+ imagery sensors acquired as a digital number (DN) range from 0 - 255 in thermal band. DNs were first converted to radiance values in Wm-2·sr-1·μm-1, using the bias and gain values specific to an individual pixel, then the radiance was converted eventually to surface temperature (in Kelvin). The results indicate that there is a significant variation in land surface temperature between the two different seasons in Yola. The mean surface temperatures estimated are 307.9 K and 298.1 K during the dry and rainy seasons respectively. The result obtained was compared with data obtained from Meteorological Department. The estimated land surface temperature showed a good correlation, with a difference of 2 K to 3 K.展开更多
Compared with traditional microwave humidity sounding capabilities at 183 GHz,new channels at 118 GHz have been mounted on the second generation of the Microwave Humidity Sounder(MWHS-2)onboard the Chinese FY-3C and F...Compared with traditional microwave humidity sounding capabilities at 183 GHz,new channels at 118 GHz have been mounted on the second generation of the Microwave Humidity Sounder(MWHS-2)onboard the Chinese FY-3C and FY-3D polar orbit meteorological satellites,which helps to perform moisture sounding.In this study,as the allsky approach can manage non-linear and non-Gaussian behavior in cloud-and precipitation-affected satellite radiances,the MWHS-2 radiances in all-sky conditions were first assimilated in the Yinhe four-dimensional variational data assimilation(YH4DVAR)system.The data quality from MWHS-2 was evaluated based on observation minus background statistics.It is found that the MWHS-2 data of both FY-3C and FY-3D are of good quality in general.Six months of MWHS-2 radiances in all-sky conditions were then assimilated in the YH4DVAR system.Based on the forecast scores and observation fits,we conclude that the all-sky assimilation of the MWHS-2 at 118-and 183-GHz channels on FY-3C/D is beneficial to the analysis and forecast fields of the temperature and humidity,and the impact on the forecast skill scores is neutral to positive.Additionally,we compared the impacts of assimilating the 118-GHz channels and the equivalent Advanced Microwave Sounding Unit-A(AMSUA)channels on global forecast accuracy in the absence of other satellite observations.Overall,the impact of the 118-GHz channels on the forecast accuracy is not as large as that for the equivalent AMSUA channels.Nevertheless,all-sky radiance assimilation of MWHS-2 in the YH4DVAR system has indeed benefited from the 118-GHz channels.展开更多
基金primarily supported by the Chinese National Natural Science Foundation of China(Grant No. G42192553)Open Fund of Fujian Key Laboratory ofSevere Weather and Key Laboratory of Straits Severe Weather(Grant No. 2023KFKT03)+6 种基金the Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(Grant No. 2023BHR-Y20)the Open Fund of the State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS202321)the Program of Shanghai Academic/Technology Research Leader(Grant No. 21XD1404500)the Shanghai Typhoon Research Foundation (Grant No. TFJJ202107)the Chinese National Natural Science Foundation of China (Grant No. G41805016)the National Meteorological Center Foundation (Grant No. FY-APP-2021.0207)the High Performance Computing Center of Nanjing University of Information Science&Technology for their support of this work
文摘This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1501803 and 2017YFC1502102)。
文摘Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.
基金supported by the National Fundamental 973 Research Program of China(Grant No.OPPAC-2013CB430102)Natural Science Foundation of China(41375025)the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions
文摘The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A(AMSU-A) on the track prediction of Typhoon Megi(2010) was studied using the Weather Research and Forecasting(WRF) model and a hybrid ensemble threedimensional variational(En3DVAR) data assimilation(DA) system.The influences of tuning the length scale and variance scale factors related to the static background error covariance(BEC) on the track forecast of the typhoon were studied.The results show that,in typhoon radiance data assimilation,a moderate length scale factor improves the prediction of the typhoon track.The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts,even when the static BEC was carefully tuned to optimize its performance.When the hybrid DA was employed,the track forecast was significantly improved,especially for the sharp northward turn after crossing the Philippines,with the flow-dependent ensemble covariance.The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically.The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR.Additionally,for 24 h forecasts,the hybrid DA experiment with use of the full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels.
文摘MetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.
文摘The data assimilation technique, known as 3DVAR, of the WRF mesoscale modeling system has been used in order to perform the impact analysis of meteorological data assimilation in the weather forecasts over the Rio Grande do Sul State in Brazil. The consistency of the data assimilation has been analyzed by investigating and evaluating the model forecast results processed with and without data assimilations. Two different procedures of data assimilation have been conducted to perform the study. The forecasts of the accumulated rainfall model variable, spatially plotted over the model integration domains, have been compared and validated against the Tropical Rain Measuring Mission (TRMM) satellite based data, as well as with the Canguçu city meteorological radar reflectivity data. The comparison has been made considering the total amount of the accumulated rainfall predicted by the model against the automatic weather station data and most of the conducted processing presented compatible results. It has also been observed that, the inclusion of assimilated data enabled an improvement in the intensity as well as in the location of the main convective cell. The radar reflectivity field showed a significant performance in all processed experiments with data assimilation. However, for some regions, more significant obtained results have been shown to be the case in which the spectral radiances were assimilated, as compared with the case in which the spectral radiances were not included. The evaluation of the vertical atmospheric profiles of temperature and dew point temperature showed only a small impact of data assimilation. However, both simulations coherently presented the two vertical profiles, when compared with the observed profiles. In short, the study shows that, although the forecasts presented some inconsistencies in the evaluated results, the 3DVAR assimilation improves significantly the forecasting of the Weather WRF model.
文摘Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.
文摘Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images commonly suffer from atmospheric effects,thereby limiting their use.In such a situation,atmospheric correction becomes a necessary pre-requisite for any further processing and accurate interpretation of spectra of different surface materials/objects.In the present study,two very advance atmospheric approaches i.e.QUAC and FLAASH have been applied on the hyperspectral remote sensing imagery.The spectra of vegetation,man-made structure and different minerals from the Gadag area of Karnataka,were extracted from the raw image and also from the QUAC and FLAASH corrected images.These spectra were compared among themselves and also with the existing USGS and JHU spectral library.FLAASH is rigorous atmospheric algorithm and requires various parameters to perform but it has capability to compensate the effects of atmospheric absorption.These absorption curves in any spectra play an important role in identification of the compositions.Therefore,the presence of unwanted absorption features can lead to wrong interpretation and identification of mineral composition.FLAASH also has an advantage of spectral polishing which provides smooth spectral curves which helps in accurate identification of composition of minerals.Therefore,this study recommends that FLAASH is better than QUAC for atmospheric correction and correct interpretation and identification of composition of any object or minerals.
基金National Natural Science Foundation of China (40875021, 40930951)Knowledge Innovation Program of Chinese Academy of Sciences ( KZCX2-YW-Q03-3)
文摘To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.
文摘针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。
基金the Association Franco-Chinoise pour la Recherche Scientifique et Technique (AFCRST) and Chinese Ministry of Science and Technology under the contract PRA E98-02.
文摘The Along-Track Scanning Radiometer (ATSR) onboard the European Remote Sensing satellite (ERS) is presently the only one available to provide quasi-simultaneous thermal infrared measurements at two view angles. Such data represent an opportunity to explore the potential information on the directional observations in the thermal infrared region, in view of the preparation of a new generation of multi-angle satellite sensors. Based on the analysis of one ATSR image, the results of this work indicate that the magnitude of the directional effect on the brightness temperature (ground anisotropic radiance), although quite sensitive to errors in atmospheric conditions, may still be retrieved with acceptable uncertainty. In order to retrieve both vegetation and soil temperatures from directional brightness temperatures, it is shown that an appropriate description of the nature and content of the pixel is needed, otherwise this retrieval will be quite uncertain.
基金partially supported by the JPSS PGRR science program(NA15NES4320001)the NOAA Joint Technology Transfer Initiative(NA19OAR4590240)at CIMSS/University of Wisconsin-Madison。
文摘Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.
文摘A Landsat data transformation method which was proposed by the author was applied to extract useful information from data of 769 ground feature classification units of worldwide scope.Three most important characteristic values--the general radiance level L,the visible-infrared radiation balance B and the band radiance variation vector (direction and speed) V were calculated.Then the 769 class units were sorted into 106 groups based on their natural characteristics.The means and standard deviations of L,B and V values for all the groups were calculated.The distributions of the 106 groups or the 769 units on the number axes of L,B and V,in the planes of L-B,L-V and B-V,and in the space of L-B-V were investigated.Finally,the typical numerical characteristics of the various ground features are discussed in consideration of their worldwide variations in the present paper.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430102)National Natural Science Foundation of China(41375025)Innovation Scientific Research Program for College Graduates of Jiangsu Province(CXZZ12-0490)
文摘The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational(ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting(WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41575029 and 41375106)the Six Talent Peaks project of Jiangsu Province(Grant No.2014JY021)
文摘Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics param- eters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are ap- plied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind anal- ysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.
基金Expo Special Project(10dz0581300)Natural Science Fund from Science and Technology Commission of Shanghai Municipality(09ZR1428700)National Public Welfare(Meteorology)Research Foundation(GYHY200906002)
文摘Based on the newly developed Weather Research and Forecasting model(WRF)and its three-dimensional variational data assimilation(3DVAR)system,this study constructed twelve experiments to explore the impact of direct assimilation of different ATOVS radiance on the intensity and track simulation of super-typhoon Fanapi(2010)using a data assimilation cycle method.The result indicates that the assimilation of ATOVS radiance could improve typhoon intensity effectively.The average bias of the central sea level pressure(CSLP)drops to 18 hPa,compared to 42 hPa in the experiment without data assimilation.However,the influence due to different radiance data is not significant,which is less than 6hPa on average,implying limited improvement from sole assimilation of ATOVS radiance.The track issue is studied in the following steps.First,the radiance from the same sensor of different satellites could produce different effect.For the AMSU-A,NOAA-15 and NOAA-18,they produce equivalent improvement,whereas NOAA-16 produces slightly poor effect.And for the AMSU-B,NOAA-15 and NOAA-16,they produce equivalent and more positive effect than that provided by the AMSU-A.Second,the assimilation radiance from different sensors of the identical satellites could also produce different effect.The assimilation of AMSU-B produces the largest improvement,while the ameliorating effect of HIRS/3assimilation is inferior to that of AMSU-B assimilation,while the AMSU-A assimilation exhibits the poorest improvement.Moreover,the simultaneous assimilation of different radiance could not produce further improvement.Finally,the experiments of simultaneous assimilation radiance from multiple satellites indicate that such assimilation may lead to negative effect due to accumulative bias when adding various radiance data into the data assimilation system.Thus the assimilation of ATOVS radiance from a single satellite may perform better than that from two or three satellites.
文摘The land surface temperature of Yola (latitude 9°11'N to 9°20'N and longitude 12°23'E to 12°33'E) North-eastern Nigeria was estimated using landsat-7 ETM+ satellite images. ENVI 4.5 software, and Thermal band 6.2 were used for the estimation, land surface temperature, from Landsat-7 ETM+ imagery sensors acquired as a digital number (DN) range from 0 - 255 in thermal band. DNs were first converted to radiance values in Wm-2·sr-1·μm-1, using the bias and gain values specific to an individual pixel, then the radiance was converted eventually to surface temperature (in Kelvin). The results indicate that there is a significant variation in land surface temperature between the two different seasons in Yola. The mean surface temperatures estimated are 307.9 K and 298.1 K during the dry and rainy seasons respectively. The result obtained was compared with data obtained from Meteorological Department. The estimated land surface temperature showed a good correlation, with a difference of 2 K to 3 K.
基金Supported by the National Key Research and Development Program of China(2018YFC1506704)National Natural Science Foundation of China(41705007)。
文摘Compared with traditional microwave humidity sounding capabilities at 183 GHz,new channels at 118 GHz have been mounted on the second generation of the Microwave Humidity Sounder(MWHS-2)onboard the Chinese FY-3C and FY-3D polar orbit meteorological satellites,which helps to perform moisture sounding.In this study,as the allsky approach can manage non-linear and non-Gaussian behavior in cloud-and precipitation-affected satellite radiances,the MWHS-2 radiances in all-sky conditions were first assimilated in the Yinhe four-dimensional variational data assimilation(YH4DVAR)system.The data quality from MWHS-2 was evaluated based on observation minus background statistics.It is found that the MWHS-2 data of both FY-3C and FY-3D are of good quality in general.Six months of MWHS-2 radiances in all-sky conditions were then assimilated in the YH4DVAR system.Based on the forecast scores and observation fits,we conclude that the all-sky assimilation of the MWHS-2 at 118-and 183-GHz channels on FY-3C/D is beneficial to the analysis and forecast fields of the temperature and humidity,and the impact on the forecast skill scores is neutral to positive.Additionally,we compared the impacts of assimilating the 118-GHz channels and the equivalent Advanced Microwave Sounding Unit-A(AMSUA)channels on global forecast accuracy in the absence of other satellite observations.Overall,the impact of the 118-GHz channels on the forecast accuracy is not as large as that for the equivalent AMSUA channels.Nevertheless,all-sky radiance assimilation of MWHS-2 in the YH4DVAR system has indeed benefited from the 118-GHz channels.