To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC res...To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.展开更多
Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and o...Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.展开更多
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an N...The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.展开更多
By use of bathymetric chart, recent change of the riverbed in the North Passage of the Yangtze Estuary has been studied in this paper. The main channel of the upper, middle and lower (section) in the North Passage h...By use of bathymetric chart, recent change of the riverbed in the North Passage of the Yangtze Estuary has been studied in this paper. The main channel of the upper, middle and lower (section) in the North Passage has been successively eroded and its groin field significantly deposited. At the same time, sediment has been deposited on the entrance region. Erosion and deposition had responded rapidly to the construction of the regulation engineering. There was about one year duration of lagging between erosion in the deep channel and the construction of the regulation engineering. The siltation lag of time in the groin field varied with the initial depth, but the average deposited thickness was about 0.5 m per year. Volumetric analysis demonstrates that there is a increasing trend of siltation in the North Passage after 2002, because of the difference in duration and quantity between erosion in the deep channel and deposition in the groin field. The water volume of the North Passage was reduced by =9% (280 million m^3) between 2002 and 2006. Sediment budget reveals that the main sediment deposited in the North Passage takes its source from the river and the ocean. The decreasing water volume was attributable to shoaling in the groin field. Its triggering factors for increased sedimentation are the navigational improvements(jetties and groins) after 1998, which altered the passage boundary and destroyed the equilibrium state on the average ebb and flood sediment fluxes. The establishment of a stable estuary is attributed to a reduction in depth of the groin field. The forecast on the sediment deposition quantity and continuous infilling time in the groin system is about 325 × 10^6m^3 and 6 - 7 years, respectively.展开更多
THE HelanMountains sit ina corner of theNingxia Hui Autonom-ous Region of north-western China in a widearc running for 250 kmfrom north to south.Insome places the range is20 to 30 km across;the individual moun-tain pe...THE HelanMountains sit ina corner of theNingxia Hui Autonom-ous Region of north-western China in a widearc running for 250 kmfrom north to south.Insome places the range is20 to 30 km across;the individual moun-tain peaks are on aver-age 1,400 m above sealevel and the high-est peak Shaguozhou,reaches 3,556 m intothe sky.When the YellowRiver enters展开更多
In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Nifio event took place preceding each of the summer floods, significant differences between ...In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Nifio event took place preceding each of the summer floods, significant differences between the two summer floods and the two E1 Nifio events were identified. The 1997/98 E1 Nifio is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an E1 Nifio Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in China's Mainland, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of BengM to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was causedby the anomalous ascending motion associated with the warming location in the two E1 Nifio events. ~rthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in E1 Nifio events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical E1 Nifio Modoki events, and the results indicate that the impact of E1 Nifio Modoki varies from case to case and is more complicated than previously revealed.展开更多
A new analog error correction (AEC) scheme based on the moving North Pacific index (MNPI) is designed in this study. This scheme shows obvious improvement in the prediction skill of the operational coupled general...A new analog error correction (AEC) scheme based on the moving North Pacific index (MNPI) is designed in this study. This scheme shows obvious improvement in the prediction skill of the operational coupled general circulation model (CGCM) of the National Climate Center of China for the rainy season rainfall (RSR) anomaly pattern correlation coefficient (ACC) over the mid-to-lower reaches of the Yangtze River (MLRYR). A comparative analysis indicates that the effectiveness of the new scheme using the MNPI is better than the system error correction scheme using the North Pacific index (NPI). A Euclidean distance- weighted mean rather than a traditional arithmetic mean, is applied to the integration of the analog year's prediction error fields. By using the MNPI AEC scheme, independent sample hindcasts of RSR during the period 2003-2009 are then evaluated. The results show that the new scheme exhibited a higher forecast skill during 2003-2009, with an average ACC of 0.47; while the ACC for the NPI case was only 0.19. Furthermore, the forecast skill of the RSR over the MLRYR is examined. In the MNPI case, empirical orthogonal function (EOF) was used in the degree compression of the prediction error fields from the CCCM, whereas the AEC scheme was applied only to its first several EOF components for which the accumulative explained variance accounted for 80% of the total variance. This further improved the ACC of the independent sample hindcasts to 0.55 during the 7-yr period.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42176166,41776024).
文摘To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.
文摘Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.
基金supported by the National Basic Research Program of China(Grant No.2009CB421406)the special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY200906018)+1 种基金the National Nature Science Foundation of China(Grant No.41175071)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN202)
文摘The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.
基金The workis supported bythe Open Foundation of State Key Laboratory of Hydrology-Water Resources Hydraulic Engineering,Hohai University(Grant No.2005409111)
文摘By use of bathymetric chart, recent change of the riverbed in the North Passage of the Yangtze Estuary has been studied in this paper. The main channel of the upper, middle and lower (section) in the North Passage has been successively eroded and its groin field significantly deposited. At the same time, sediment has been deposited on the entrance region. Erosion and deposition had responded rapidly to the construction of the regulation engineering. There was about one year duration of lagging between erosion in the deep channel and the construction of the regulation engineering. The siltation lag of time in the groin field varied with the initial depth, but the average deposited thickness was about 0.5 m per year. Volumetric analysis demonstrates that there is a increasing trend of siltation in the North Passage after 2002, because of the difference in duration and quantity between erosion in the deep channel and deposition in the groin field. The water volume of the North Passage was reduced by =9% (280 million m^3) between 2002 and 2006. Sediment budget reveals that the main sediment deposited in the North Passage takes its source from the river and the ocean. The decreasing water volume was attributable to shoaling in the groin field. Its triggering factors for increased sedimentation are the navigational improvements(jetties and groins) after 1998, which altered the passage boundary and destroyed the equilibrium state on the average ebb and flood sediment fluxes. The establishment of a stable estuary is attributed to a reduction in depth of the groin field. The forecast on the sediment deposition quantity and continuous infilling time in the groin system is about 325 × 10^6m^3 and 6 - 7 years, respectively.
文摘THE HelanMountains sit ina corner of theNingxia Hui Autonom-ous Region of north-western China in a widearc running for 250 kmfrom north to south.Insome places the range is20 to 30 km across;the individual moun-tain peaks are on aver-age 1,400 m above sealevel and the high-est peak Shaguozhou,reaches 3,556 m intothe sky.When the YellowRiver enters
基金Supported by the National Key Basic Research and Development (973) Program of China (2012CB417403)China Meteorological Administration Special Public Welfare Research Fund (GYHY201006022 and GYHY200906018)
文摘In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Nifio event took place preceding each of the summer floods, significant differences between the two summer floods and the two E1 Nifio events were identified. The 1997/98 E1 Nifio is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an E1 Nifio Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in China's Mainland, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of BengM to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was causedby the anomalous ascending motion associated with the warming location in the two E1 Nifio events. ~rthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in E1 Nifio events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical E1 Nifio Modoki events, and the results indicate that the impact of E1 Nifio Modoki varies from case to case and is more complicated than previously revealed.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430204)National Natural Science Foundation of China(41305100 and 41105055)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306021)
文摘A new analog error correction (AEC) scheme based on the moving North Pacific index (MNPI) is designed in this study. This scheme shows obvious improvement in the prediction skill of the operational coupled general circulation model (CGCM) of the National Climate Center of China for the rainy season rainfall (RSR) anomaly pattern correlation coefficient (ACC) over the mid-to-lower reaches of the Yangtze River (MLRYR). A comparative analysis indicates that the effectiveness of the new scheme using the MNPI is better than the system error correction scheme using the North Pacific index (NPI). A Euclidean distance- weighted mean rather than a traditional arithmetic mean, is applied to the integration of the analog year's prediction error fields. By using the MNPI AEC scheme, independent sample hindcasts of RSR during the period 2003-2009 are then evaluated. The results show that the new scheme exhibited a higher forecast skill during 2003-2009, with an average ACC of 0.47; while the ACC for the NPI case was only 0.19. Furthermore, the forecast skill of the RSR over the MLRYR is examined. In the MNPI case, empirical orthogonal function (EOF) was used in the degree compression of the prediction error fields from the CCCM, whereas the AEC scheme was applied only to its first several EOF components for which the accumulative explained variance accounted for 80% of the total variance. This further improved the ACC of the independent sample hindcasts to 0.55 during the 7-yr period.