In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparen...Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparent,the pure cubic Ba(Zr,Mg,Ta)O3 phases(BZMT)were realized in advance by skillfully modulating the lattice structure of BMT from trigonal symmetric to cubic symmetric through doping Zr4+ into the lattice of BMT crystal.Highly optical transmittance of 74% at 650 n,,which hit the upper limit of the theory,was achieved for BZMT.Both abbe number of 23.4 and the bandgap Eg of 3.22 eV have been calculated.展开更多
The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure a...The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.展开更多
At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and thre...At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.展开更多
The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under...The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.展开更多
Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed trans...Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.展开更多
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants...The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index ) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that : ( 1 ) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges ; ( 3 ) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness.展开更多
Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incide...Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incident. We apply horizontally incident input waves. A model of SRR is used to understand the behavior and its affects. We calculate the S-parameters using S-parameter analysis and the results for transmission, refractive index, permeability and permittivity of the structure is induced. The negative refractive index is found to be significantly dependent upon the width of the continuous wire as well as gap between resonators. Moreover, we study the effect of lattice constant on the electromagnetic response of the structure. It is expected that this work will provide useful information for design and fabrication of metamaterials with negative refractive index for in-plane applications.展开更多
Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negati...Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.展开更多
The generalized Lagrangian is defined in a dissipative electromagnetic medium on the basis of the combination of dynamical analysis and fractional derivative. Lorentz medium models are obtained by formulating relevant...The generalized Lagrangian is defined in a dissipative electromagnetic medium on the basis of the combination of dynamical analysis and fractional derivative. Lorentz medium models are obtained by formulating relevant Euler-Lagrange equations. The invariance is obtained subsequently by investigating the invariance of time variation in the system, and then the relation between the related Hamiltonian and electromagnetic energy density is investigated. Canonical equations are obtained eventually. The electrodynamic interpretation on dissipative electromagnetic systems is revealed.展开更多
We demonstrate a scheme for coherently induced grating based on a mixture of two three-level atomic species interacting with two standing-wave fields. As a result of interaction between the absorptive and amplified Ra...We demonstrate a scheme for coherently induced grating based on a mixture of two three-level atomic species interacting with two standing-wave fields. As a result of interaction between the absorptive and amplified Raman resonances, the refractive index of the medium can be enhanced and modulated periodically. Then a sinusoidal grating, which can diffract the probe field into high-order directions, is coherently formed in the medium. The proposed scheme is theoretically investigated in a mixture of atomic isotopes of rubidium. The results show that the diffraction efficiency depends strongly on the two two-photon detunings of the two Raman transitions and the intensities of the two driving standing-wave fields. The proposed electromagnetically induced grating scheme may be applied to the all-optical switching and beam splitting in optical networking and communication.展开更多
A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approxi...A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field.展开更多
A simple three-level system is proposed to produce high index of refraction with zero absorption in an Er^3+-doped yttrium aluminium garnet (YAG) crystal, which is achieved for a probe field between the excited sta...A simple three-level system is proposed to produce high index of refraction with zero absorption in an Er^3+-doped yttrium aluminium garnet (YAG) crystal, which is achieved for a probe field between the excited state 4I13/2 and ground state 4I15/2 by adjusting a strong coherent driving field between the upper excited state 4I11/2 and 4I15/2. It is found that the changes of the frequency of the coherent driving field and the concentration of Er^3+ ions in the YAG crystal can maximize the index of refraction accompanied by vanishing absorption. This result could be useful for the dispersion compensation in fibre communication, laser particle acceleration, high precision magnetometry and so on.展开更多
Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in ...Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in this paper, followed by introduction of the methods of experimentation and theoretical calculation for the planar optical waveguides. The refractive index profiles of the optical waveguides are analyzed. The above work offers useful information for study on new type materials for optical communications.展开更多
An Electromagnetic (EM) radiation in dispersion less free space vacuum is represented by a photon, with corpuscular and wave nature. The discussions, for the past century aimed at the nature of photon inside a media h...An Electromagnetic (EM) radiation in dispersion less free space vacuum is represented by a photon, with corpuscular and wave nature. The discussions, for the past century aimed at the nature of photon inside a media having dispersion in the refraction property, other than free space. What about its nature if the space be of refractive index which is negative, is discussed in this paper. We call mechanical momentum, wave-momentum, and try to match our present theories with intriguing property of this ‘photon’ or pulse carrying EM energy packet, and more so we try to find its property energy, momentum inside a media a positive refractive media, and if the media show a negative refractive index behavior, then these queries are profound, and suitable explanations to these classical concepts of corpuscular-wave nature of photon inside these media are quest for the scientists dealing with these materials having negative index of refraction. Here some of this counterintuitive nature of corpuscular-wave nature of photon inside negative indexed material is brought out, with possible ‘new definition’ of its ‘wave-momentum’, the concept of ‘reactive energy’ inside negative indexed material, along with possible ‘new wave equation’. These definitions and expressions of ‘wave-momentum’ and ‘reactive energy’ pertaining to negative indexed material are new and discussed and derived by classical means.展开更多
Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead...Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.展开更多
Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both ...Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.展开更多
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
基金Supported by the National Key Research and Development Program of China(2017YFB0403200)
文摘Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparent,the pure cubic Ba(Zr,Mg,Ta)O3 phases(BZMT)were realized in advance by skillfully modulating the lattice structure of BMT from trigonal symmetric to cubic symmetric through doping Zr4+ into the lattice of BMT crystal.Highly optical transmittance of 74% at 650 n,,which hit the upper limit of the theory,was achieved for BZMT.Both abbe number of 23.4 and the bandgap Eg of 3.22 eV have been calculated.
文摘The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.61271353 and 60908033)the Natural Science Foundation of Anhui Province,China(Grant No.1408085MKL47)
文摘At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.
基金Project supported by the National Natural Science Foundation(NSF) of China (Nos. 90101024 and 60378037) and the NationalBasic Research Program (973) of China (No. 2004CB719805)
文摘The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar of China under Grant No 50025207, and the National Basic Research Programme of China under Grant No 2004CB719800.
文摘Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51176038 and 51106036)
文摘The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index ) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that : ( 1 ) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges ; ( 3 ) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness.
文摘Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incident. We apply horizontally incident input waves. A model of SRR is used to understand the behavior and its affects. We calculate the S-parameters using S-parameter analysis and the results for transmission, refractive index, permeability and permittivity of the structure is induced. The negative refractive index is found to be significantly dependent upon the width of the continuous wire as well as gap between resonators. Moreover, we study the effect of lattice constant on the electromagnetic response of the structure. It is expected that this work will provide useful information for design and fabrication of metamaterials with negative refractive index for in-plane applications.
文摘Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60601028.
文摘The generalized Lagrangian is defined in a dissipative electromagnetic medium on the basis of the combination of dynamical analysis and fractional derivative. Lorentz medium models are obtained by formulating relevant Euler-Lagrange equations. The invariance is obtained subsequently by investigating the invariance of time variation in the system, and then the relation between the related Hamiltonian and electromagnetic energy density is investigated. Canonical equations are obtained eventually. The electrodynamic interpretation on dissipative electromagnetic systems is revealed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204367 and 61475191)the Fundamental Research Funds for the Central Universities,China(Grant Nos.GK201503022 and GK201601008)
文摘We demonstrate a scheme for coherently induced grating based on a mixture of two three-level atomic species interacting with two standing-wave fields. As a result of interaction between the absorptive and amplified Raman resonances, the refractive index of the medium can be enhanced and modulated periodically. Then a sinusoidal grating, which can diffract the probe field into high-order directions, is coherently formed in the medium. The proposed scheme is theoretically investigated in a mixture of atomic isotopes of rubidium. The results show that the diffraction efficiency depends strongly on the two two-photon detunings of the two Raman transitions and the intensities of the two driving standing-wave fields. The proposed electromagnetically induced grating scheme may be applied to the all-optical switching and beam splitting in optical networking and communication.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field.
基金Project supported by the National Natural Science Foundation of China (Grant No 10334010).
文摘A simple three-level system is proposed to produce high index of refraction with zero absorption in an Er^3+-doped yttrium aluminium garnet (YAG) crystal, which is achieved for a probe field between the excited state 4I13/2 and ground state 4I15/2 by adjusting a strong coherent driving field between the upper excited state 4I11/2 and 4I15/2. It is found that the changes of the frequency of the coherent driving field and the concentration of Er^3+ ions in the YAG crystal can maximize the index of refraction accompanied by vanishing absorption. This result could be useful for the dispersion compensation in fibre communication, laser particle acceleration, high precision magnetometry and so on.
文摘Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in this paper, followed by introduction of the methods of experimentation and theoretical calculation for the planar optical waveguides. The refractive index profiles of the optical waveguides are analyzed. The above work offers useful information for study on new type materials for optical communications.
文摘An Electromagnetic (EM) radiation in dispersion less free space vacuum is represented by a photon, with corpuscular and wave nature. The discussions, for the past century aimed at the nature of photon inside a media having dispersion in the refraction property, other than free space. What about its nature if the space be of refractive index which is negative, is discussed in this paper. We call mechanical momentum, wave-momentum, and try to match our present theories with intriguing property of this ‘photon’ or pulse carrying EM energy packet, and more so we try to find its property energy, momentum inside a media a positive refractive media, and if the media show a negative refractive index behavior, then these queries are profound, and suitable explanations to these classical concepts of corpuscular-wave nature of photon inside these media are quest for the scientists dealing with these materials having negative index of refraction. Here some of this counterintuitive nature of corpuscular-wave nature of photon inside negative indexed material is brought out, with possible ‘new definition’ of its ‘wave-momentum’, the concept of ‘reactive energy’ inside negative indexed material, along with possible ‘new wave equation’. These definitions and expressions of ‘wave-momentum’ and ‘reactive energy’ pertaining to negative indexed material are new and discussed and derived by classical means.
文摘Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.
基金Project partially supported by the National Basic Research Program of China(Grant No2004CB719802)an additional support from the Science and Technology Department of Zhejiang Province,China
文摘Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.