期刊文献+
共找到5,126篇文章
< 1 2 250 >
每页显示 20 50 100
Performance comparison of training algorithms for the estimation of B?hme abrasion resistance using neural networks
1
作者 Ali Can OZDEMIR Esma KAHRAMAN 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3732-3742,共11页
Natural stones used as floor and wall coverings are exposed to many different abrasive forces,so it is essential to choose suitable materials for wear resistance in terms of the life of the structure.The abrasion resi... Natural stones used as floor and wall coverings are exposed to many different abrasive forces,so it is essential to choose suitable materials for wear resistance in terms of the life of the structure.The abrasion resistance of natural stones can be determined in the laboratory by applying the B?hme abrasion resistance(BAR)test.However,the direct analysis of BAR in the laboratory has disadvantages such as wasting time and energy,experimental errors,and health impacts.To eliminate these disadvantages,the estimation of BAR using artificial neural networks(ANN)was proposed.Different natural stone samples were collected from Türkiye,and uniaxial compressive strength(UCS),flexural strength(FS),water absorption rate(WA),unit volume weight(UW),effective porosity(n),and BAR tests were carried out.The outputs of these tests were gathered and a data set,consisting of a total of 105 data,was randomly divided into two groups:testing and training.In the current study,the success of three different training algorithms of Levenberg-Marquardt(LM),Bayesian regularization(BR),and scaled conjugate gradient(SCG)were compared for BAR prediction of natural stones.Statistical criteria such as coefficient of determination(R~2),mean square error(MSE),mean square error(RMSE),and mean absolute percentage error(MAPE),which are widely used and adopted in the literature,were used to determine predictive validity.The findings of the study indicated that ANN is a valid method for estimating the BAR value.Also,the LM algorithm(R~2=0.9999,MSE=0.0001,RMSE=0.0110,and MAPE=0.0487)in training and the BR algorithm(R~2=0.9896,MSE=0.0589,RMSE=0.2427,and MAPE=1.2327)in testing showed the best prediction performance.It has been observed that the proposed method is quite practical to implement.Using the artificial neural networks method will provide an advantage in similar laborintensive experimental studies. 展开更多
关键词 Böhme abrasion resistance neural networks LEVENBERG-MARQUARDT Bayesian regularization Scaled conjugate gradient
下载PDF
Identification of TSS in the Human Genome Based on a RBF Neural Network 被引量:1
2
作者 Zhi-Hong Peng Jie Chen Li-Jun Cao Ting-Ting Gao 《International Journal of Automation and computing》 EI 2006年第1期35-40,共6页
The identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. This paper introduces a new algorithm for the recognition of functional transcription start sites ... The identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. This paper introduces a new algorithm for the recognition of functional transcription start sites (TSSs) in human genome sequences, in which a RBF neural network is adopted, and an improved heuristic method for a 5-tuple feature viable construction, is proposed and implemented in two RBFPromoter and ImpRBFPromoter packages developed in Visual C++ 6.0. The algorithm is evaluated on several different test sequence sets. Compared with several other promoter recognition programs, this algorithm is proved to be more flexible, with stronger learning ability and higher accuracy. 展开更多
关键词 Promoter recognition human genome transcription start site rbf neural network.
下载PDF
Study on the comprehensive advantage evaluation method of high-tech enterprises based on RBF artificial neural network
3
作者 王宏起 王雪原 唐宇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期645-649,共5页
This paper designs an intelligent evaluation approach using a Radial Basis Function (RBF) Artificial Neural Network. We based our approach on establishing a comprehensive advantage evaluating index system that offer... This paper designs an intelligent evaluation approach using a Radial Basis Function (RBF) Artificial Neural Network. We based our approach on establishing a comprehensive advantage evaluating index system that offers scientific substance for creating a development plan and the strategic management of high-tech industry and regional clusters of high-tech enterprises. Furnhermore, this paper selects some typical high-tech enterprises' data to make comprehensive training on the network system. Meanwhile, the paper chooses some enterprises as testing samples to test the method, the result of which proves that this method is truly effective. The research of this paper provides a comprehensive advantage evaluating and managing method for high-tech enterprise. 展开更多
关键词 comprehensive advantage evaluating method high-tech enterprise rbf artificial neural network
下载PDF
The study of film tension control system based on RBF neural network and PID
4
作者 Jia Chunying Ding Zhigang Chen Yuchen 《International English Education Research》 2014年第8期82-85,共4页
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica... In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID. 展开更多
关键词 Control PID algorithm Jacobian information identification rbf neural network Matlab
下载PDF
Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids
5
作者 Haojie Lian Jiaqi Wang +4 位作者 Leilei Chen Shengze Li Ruochen Cao Qingyuan Hu Peiyun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1143-1163,共21页
This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radi... This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radiance Field(NeRF)and improves image quality using frequency regularization.The NeRF model is obtained via joint training ofmultiple artificial neural networks,whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel.In addition,customized physics-informed neural network(PINN)with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations and convection-diffusion equations to reconstruct the velocity field.The velocity uncertainties are also evaluated through ensemble learning.The effectiveness of the proposed algorithm is demonstrated through numerical examples.The presentmethod is an important step towards downstream tasks such as reliability analysis and robust optimization in engineering design. 展开更多
关键词 Uncertainty quantification neural radiance field physics-informed neural network frequency regularization twolayer activation function ensemble learning
下载PDF
Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton
6
作者 Yibo Han Hongtao Ma +6 位作者 Yapeng Wang Di Shi Yanggang Feng Xianzhong Li Yanjun Shi Xilun Ding Wuxiang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期83-99,共17页
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ... The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness. 展开更多
关键词 Lower limb exoskeleton Model compensation rbf neural network Computed torque method
下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
7
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 rbf neural network: identification OZONE biological activated carbon
下载PDF
Decentralized Semi-Supervised Learning for Stochastic Configuration Networks Based on the Mean Teacher Method
8
作者 Kaijing Li Wu Ai 《Journal of Computer and Communications》 2024年第4期247-261,共15页
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ... The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments. 展开更多
关键词 Stochastic neural network Consistency regularization Semi-Supervised Learning Decentralized Learning
下载PDF
Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases 被引量:6
9
作者 Lei Wang Cheng Shao +1 位作者 Hai Wang Hong Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期230-234,共5页
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp... Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process. 展开更多
关键词 membrane separation hydrogen recovery soft sensor rbf neural networks REFINERY operation optimization
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:5
10
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 Adaptive control rbf neural network Actuator nonlinearity Robot manipulator DEADZONE
下载PDF
Prediction of Free Lime Content in Cement Clinker Based on RBF Neural Network 被引量:5
11
作者 YUAN Jingling ZHONG Luo +1 位作者 DU nongfu TAO Haizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期187-190,共4页
Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting th... Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting the parameters of processing technique. In fact, the making process of cement clinker is very complex. Therefore, it is very difficult to describe this relationship using the conventional mathematical methods. Using several models, i e, linear regression model, nonlinear regression model, Back Propagation neural network model, and Radial Basis Function (RBF) neural network model, we investigated the possibility to predict the free calcium oxide content according to selected parameters of the production process. The results indicate that RBF neural network model can predict the free lime content with the highest precision (1.3%) among all the models. 展开更多
关键词 rbf neural network cement clinker free lime content
下载PDF
Rotation Angle Control Strategy for Telescopic Flexible Manipulator Based on a Combination of Fuzzy Adjustment and RBF Neural Network 被引量:6
12
作者 Dongyang Shang Xiaopeng Li +2 位作者 Meng Yin Fanjie Li Bangchun Wen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期203-226,共24页
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W... The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles. 展开更多
关键词 Flexible manipulator rbf neural network Fuzzy control Dynamic uncertainty
下载PDF
PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4
13
作者 Zhang Shuqing Hu Yongtao +1 位作者 Bao Hongyan Li Xinxin 《Journal of Electronics(China)》 2014年第1期61-67,共7页
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco... Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. 展开更多
关键词 Phase-space reconstruction Chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis Function(rbf) neural network
下载PDF
Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network 被引量:5
14
作者 刘震涛 费少梅 《Journal of Zhejiang University Science》 CSCD 2004年第8期960-965,共6页
Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CN... Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data. 展开更多
关键词 Dual fuel engine Emission performance rbf neural network
下载PDF
Nonlinear modeling based on RBF neural networks identification and adaptive fuzzy control of DMFC stack 被引量:1
15
作者 苗青 曹广益 朱新坚 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期346-351,共6页
The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and co... The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and control problem of DMFC stack. An adaptive fuzzy neural networks temperature controller was designed based on the identification models established, and parameters of the controller were regulated by novel back propagation (BP) algorithm. Simulation results show that the RBF neural networks identification modeling method is correct, effective and the models established have good accuracy. Moreover, performance of the adaptive fuzzy neural networks temperature controller designed is superior. 展开更多
关键词 direct methanol fuel cell (DMFC) stack radial basis function rbf neural networks contxoller.
下载PDF
Simulation of Silty Clay Compressibility Parameters Based on Improved BP Neural Network Using Bayesian Regularization 被引量:1
16
作者 CAI Run PENG Tao +2 位作者 WANG Qian HE Fanmin ZHAO Duoying 《Earthquake Research in China》 CSCD 2020年第3期378-393,共16页
Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional m... Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional methods require massive human and financial resources.In order to reasonably simulate the compressibility parameters of the sample,this paper firstly adopts the correlation analysis to select seven influencing factors.Each of the factors has a high correlation with compressibility parameters.Meanwhile,the proportion of the weights of the seven factors in the Bayesian neural network is analyzed based on Garson theory.Secondly,an output model of the compressibility parameters of BR-BP silty clay is established based on Bayesian regularized BP neural network.Finally,the model is used to simulate the measured compressibility parameters.The output results are compared with the measured values and the output results of the traditional LM-BP neural network.The results show that the model is more stable and has stronger nonlinear fitting ability.The output of the model is basically consistent with the actual value.Compared with the traditional LMBP neural network model,its data sensitivity is enhanced,and the accuracy of the output result is significantly improved,the average value of the relative error of the compression coefficient is reduced from 15.54%to 6.15%,and the average value of the relative error of the compression modulus is reduced from 6.07%to 4.62%.The results provide a new technical method for obtaining the compressibility parameters of silty clay in this area,showing good theoretical significance and practical value. 展开更多
关键词 Silty clay COMPRESSIBILITY Correlation analysis Bayesian regularization neural networks
下载PDF
NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh 被引量:1
17
作者 Abdullah Al Jami Meher Uddin Himel +2 位作者 Khairul Hasan Shilpy Rani Basak Ayesha Ferdous Mita 《Journal of Groundwater Science and Engineering》 2020年第2期118-126,共9页
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of ground... Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs(NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt(LM) and Bayesian Regularization(BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error(MSE), coefficient of determination(R^2), and Nash-Sutcliffe coefficient of efficiency(NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period. 展开更多
关键词 NARX neural networks Artificial neural networks Groundwater level Levenberg-Marquardt Algorithm(LMA) Bayesian regularization Algorithm(BRA)
下载PDF
Research on the Correlation Between Physical Examination Indexes and TCM Constitutions Using the RBF Neural Network 被引量:3
18
作者 LUO Yue LIU Yu-Nan +1 位作者 LIN Bing WEN Chuan-Biao 《Digital Chinese Medicine》 2020年第1期11-19,共9页
Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural n... Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural network.Methods The raw data of physical examination indexes and TMC constitutions of 650 subjects who underwent a physical examination were cleaned,classified and sorted,on the basis of which valid data were retrieved and categorized into a training dataset and a test dataset.Subsequently,the RBF neural network was applied to the valid samples in the training set to establish correlation models between various physical examination indexes and TCM constitutions.The accuracy and the error margin of the correlation model were then verified using the valid samples in the test set.Results Of all selected samples,the highest accuracy rates were 80% for the blood lipid index-TCM constitution model;100% for the renal function index-TCM constitution model;100% for the blood routine(male)index-TCM constitution model;88.8% for the blood routine(female)index-TCM constitution model;84.1%for the urine routine index-TCM constitution model;and 100% for the blood transfusion index-TCM constitution model.Conclusions The samples selected in this study suggested that there is a strong correlation between physical examination indexes and TCM constitutions,making it feasible to apply the established correlation models to TCM constitution identification. 展开更多
关键词 TCM constitution Physical examination index Correlation model rbf neural network
下载PDF
Detection and Diagnosis of Urban Rail Vehicle Auxiliary Inverter Using Wavelet Packet and RBF Neural Network 被引量:1
19
作者 Guangwu Liu Jing Long +3 位作者 Lingzhi Yang Zhaoyi Su Dechen Yao Xiangli Zhong 《Journal of Intelligent Learning Systems and Applications》 2013年第4期211-215,共5页
This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signa... This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults. 展开更多
关键词 Fault DIAGNOSIS Urban RAIL Vehicle AUXILIARY Inverter WAVELET PACKET rbf neural network
下载PDF
Parallel Physics-Informed Neural Networks Method with Regularization Strategies for the Forward-Inverse Problems of the Variable Coefficient Modified KdV Equation 被引量:1
20
作者 ZHOU Huijuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期511-544,共34页
This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-d... This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance. 展开更多
关键词 Data-driven forward-inverse problems parallel physics-informed neural networks regularization strategies variable coefficient modified KdV equation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部