Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that intr...This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.展开更多
In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical...In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
In this paper, we determine the frequency, energy and momentum of the primordial spherical wave at the birth of our universe, which are consistent with the fact that the total energy of our universe was created in the...In this paper, we determine the frequency, energy and momentum of the primordial spherical wave at the birth of our universe, which are consistent with the fact that the total energy of our universe was created in the hot Big Bang. With this, we also indirectly demonstrate the consistency of previous works on the hypothesis of primary particles, by using their results. We obtain a hyper-high initial frequency of the spherical wave, which is not in contradiction with string theory.展开更多
Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the sam...Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.展开更多
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors...In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed.展开更多
Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative moti...Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.展开更多
Using the equation of motion expression in a curved space proper time is a useful method to explain the relation between the curvature of space-time and the potential of any field obtained. Taking into account the exp...Using the equation of motion expression in a curved space proper time is a useful method to explain the relation between the curvature of space-time and the potential of any field obtained. Taking into account the expression for the Hamiltonian density, the effect of fields, as well as the effect motion, on the mass, and, their effect on energy is found. The new expression of energy reduced to the ordinary Newton’s energy expression. It also explains the gravitational red shift.展开更多
On the basis of field observations, the complex time-space spreading pattern and focal mechanism of the 1989Batang earthquake swarm are studied in this paper. The fault motions of the epicenter area are analysed bythe...On the basis of field observations, the complex time-space spreading pattern and focal mechanism of the 1989Batang earthquake swarm are studied in this paper. The fault motions of the epicenter area are analysed bythe leveling survey before and after strong events. From the given simplified focal mechanical model of theswarm,the process of fracture indicates that swarm strong ruptures are associated with the spreading and thevirgation of the barrier of irregularen en echelon source fault system.展开更多
The purpose of this paper is to engage with Gilles Deleuze's work on time and space in cinema as a theoretical trajectory for exploring the video art of Lia Lapithi Shukuroglou. In Cinema 2: The Time-Image (1989),...The purpose of this paper is to engage with Gilles Deleuze's work on time and space in cinema as a theoretical trajectory for exploring the video art of Lia Lapithi Shukuroglou. In Cinema 2: The Time-Image (1989), Deleuze argues that post-Second World War cinema has been shaped by a historical transformation compelling it to create new signs and images. Centering on the post-war landscape of Cyprus in 1974, the moment of "historical transformation" in Deleuze is transposed to this national context; examining Lapithi's response to the crisis of historical time in its relation to physical spaces. It negotiates a contextualized reading of three videos and argues that they manifest Deleuzian "time-images". These texts react to the territorialization of real spaces by deterritorializing official national history. Using Martin Jones' study, Deleuze, cinema and national identity: Narrative time in national contexts (2006) Lapithi's time-images are interpreted as "unruly" as they resist a linear narrative and destabilize public time. Contrary to Martin Jones's view that time-images constitute a temporary deviation from flowing national time, the author argues that Lapithi excavates alternative temporalities in perpetuity; whilst proposing that in the context of Cyprus the deterritorialization of space by time postpones the nation's identity.展开更多
The understanding about the creation of our universe is explored in many philosophies, natural sciences, religions, ideologies, traditions, and disciplines. Current natural science cannot answer this question at the f...The understanding about the creation of our universe is explored in many philosophies, natural sciences, religions, ideologies, traditions, and disciplines. Current natural science cannot answer this question at the fundamental level. In this work, we combine the ancient Chinese Tao wisdom about the creation with quantum physics. We propose that everything comes from the emptiness. Our universe is manifested from the emptiness through two pairs of duality measurements: space and time duality pair and inclusion and exclusion duality pair. From this understanding, we are able to derive one mathematic formula describing our universe. It also yields a new metaphysical approach to derive and interpret string theory as well as produce more testable predictions from string theory. This work gives a new way to understand and mathematically describe how our universe is created and evolved. It provides another way to comprehend the meaning and function of space and time. It indicates that our universe is manifested from the emptiness through human actions. Space and time is a pair of duality action and codes that help manifest our universe. It provides answer to an important philosophical question about whether and why we can understand and mathematically describe our universe.展开更多
A simple assumption for dark matter leads to magnetic-monopole-like terms to Maxwell’s Equations, a photon model with wave-particle duality, nuclear stability, a decelerating expansion of the universe, and a dark-mat...A simple assumption for dark matter leads to magnetic-monopole-like terms to Maxwell’s Equations, a photon model with wave-particle duality, nuclear stability, a decelerating expansion of the universe, and a dark-matter relativity that defines the origin of space and time.展开更多
The remaining challenges, confronting high-power microwave (HPM) sources and pulsed power generators, stim- ulate the developments of robust relativistic electron beam sources. This paper presents a carbon fibre cat...The remaining challenges, confronting high-power microwave (HPM) sources and pulsed power generators, stim- ulate the developments of robust relativistic electron beam sources. This paper presents a carbon fibre cathode which is tested in a single pulsed power generator. The distribution and the development of cathode plasma are observed by time-and-space resolved diagnostics, and the uniformity of electron beam density is checked by taking x-ray images. A quasistationary behaviour of cathode plasma expansion is observed. It is found that the uniformity of the extracted electron beam is satisfactory in spite of individual plasma jets on the cathode surface. These results show that carbon fibre cathodes can provide a positive prospect for developing a high-quality electron beam.展开更多
In fundamental theories of physics, the dynamical equations all have time inversion invariance. Except for the evolution of some simple system which has realistic inverse processes, but for a slightly more complicated...In fundamental theories of physics, the dynamical equations all have time inversion invariance. Except for the evolution of some simple system which has realistic inverse processes, but for a slightly more complicated system, the evolution processes are irreversible. This is the problem of arrow of time, which is always warmly debated. In different point of view, we find there may have some conceptual misunderstanding in the controversy: 1) The realization of an inverse process does not mean the time of the system goes backward. 2) The principles of relativity and covariance are the constraints to physical laws, but not constraints to specific solutions. The equations must be covariant, but the solutions are not definitely symmetric. 3) Time is a global property of the universe, which is a measurement of the evolution process of the universe. The internal time of a matter system reflecting its internal evolution speed also takes this cosmic time as a unified background and standard of measurement. 4) The universe has a unified cosmic time T and a cosmic space related to this cosmic time. They are objective and absolute. 5) The eigensolution of a spinor is a critical state losing time concept, which responses the interaction of environment with some uncertainty, then the evolution process of the world is not uniquely determined. 6) The non-uniqueness of the evolution process means that the inverse process is absent. So for a world including spinors, the evolution is essentially irreversible. In this paper, according to the widely accepted principles and direct calculations of transformation, we reveal the misunderstandings in the usual controversy, and then give more natural and reasonable explanations for structure of space-time and arrow of time.展开更多
In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived...In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived and some properties are discussed. Spherical symmetric solutions for the motion are illustrated and some interesting physical phenomena are discovered. The equations of the null membranes are derived and the exact solutions are also given. Spherical symmetric solutions for null membranes are just the two horizons of Reissner-NordstrSm space-time.展开更多
One of the main problems of contemporary physics is to find a quantum description of gravity. This present approach attempts to remedy the problem through the quantization of a finite but large flat Minkowski space-ti...One of the main problems of contemporary physics is to find a quantum description of gravity. This present approach attempts to remedy the problem through the quantization of a finite but large flat Minkowski space-time by means of Fourier expansion of the displacement four vector. By applying second quantization techniques, space-time emerges as a superposition of space-time eigen states or lattices of quantized space-time vibrations also known as gravitons. Each lattice element four vector is a graviton and traces out an elementary four volume (lattice cell). The stress-momentum tensor of each graviton defines its curvature and also the curvature of the associated lattice as described by General Relativity. The eigen states of space-time are found to be separated by a quantum of energy equal to the product of the Hubble constant and the Planck constant. The highest energy state is at Planck energies. This paper also shows that gravitons can be absorbed and emitted by the space-time lattice changing the volume of its primitive cells and that particles of observable matter are associated with a graviton whose frequency is equal to the particle’s Compton frequency which the lattice can absorb producing a perturbation in the lattice. The space-time lattice is found to be unstable and decays by radiating low energy gravitons of energy equal to the product of the Hubble constant and the Planck constant. This decay causes the space-time superstructure to expand. The graviton is seen a composite spin 2 particle made from a combination of spin half components of the displacement four vector elements. The spin symmetry of its constituent elements can breakdown to give rise to other vector or scalar bosons. Dark Matter is seen as a consequence of Bose-Einstein statistics of gravitons which results in some regions of the lattice having more energy than others.展开更多
According to our hypothesis, at the very beginning of the Big Bang, a hyperenergetic spherical wave was created. We described its characteristics in our previous work, and the present work is based on them. Logically,...According to our hypothesis, at the very beginning of the Big Bang, a hyperenergetic spherical wave was created. We described its characteristics in our previous work, and the present work is based on them. Logically, we saw that in cosmic inflation the frequency of such a wave would decrease sharply. Based on the temperature that prevailed immediately after inflation according to the hot Big Bang model, we determined a measure of the size of the inflation in this model, in accordance with our hypothesis.展开更多
A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<...A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.展开更多
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
文摘This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.
文摘In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
文摘In this paper, we determine the frequency, energy and momentum of the primordial spherical wave at the birth of our universe, which are consistent with the fact that the total energy of our universe was created in the hot Big Bang. With this, we also indirectly demonstrate the consistency of previous works on the hypothesis of primary particles, by using their results. We obtain a hyper-high initial frequency of the spherical wave, which is not in contradiction with string theory.
文摘Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.
基金State Key Project of Science and Technology of China (2001BA601B01) and State 863 Plan of China.
文摘In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed.
文摘Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.
文摘Using the equation of motion expression in a curved space proper time is a useful method to explain the relation between the curvature of space-time and the potential of any field obtained. Taking into account the expression for the Hamiltonian density, the effect of fields, as well as the effect motion, on the mass, and, their effect on energy is found. The new expression of energy reduced to the ordinary Newton’s energy expression. It also explains the gravitational red shift.
文摘On the basis of field observations, the complex time-space spreading pattern and focal mechanism of the 1989Batang earthquake swarm are studied in this paper. The fault motions of the epicenter area are analysed bythe leveling survey before and after strong events. From the given simplified focal mechanical model of theswarm,the process of fracture indicates that swarm strong ruptures are associated with the spreading and thevirgation of the barrier of irregularen en echelon source fault system.
文摘The purpose of this paper is to engage with Gilles Deleuze's work on time and space in cinema as a theoretical trajectory for exploring the video art of Lia Lapithi Shukuroglou. In Cinema 2: The Time-Image (1989), Deleuze argues that post-Second World War cinema has been shaped by a historical transformation compelling it to create new signs and images. Centering on the post-war landscape of Cyprus in 1974, the moment of "historical transformation" in Deleuze is transposed to this national context; examining Lapithi's response to the crisis of historical time in its relation to physical spaces. It negotiates a contextualized reading of three videos and argues that they manifest Deleuzian "time-images". These texts react to the territorialization of real spaces by deterritorializing official national history. Using Martin Jones' study, Deleuze, cinema and national identity: Narrative time in national contexts (2006) Lapithi's time-images are interpreted as "unruly" as they resist a linear narrative and destabilize public time. Contrary to Martin Jones's view that time-images constitute a temporary deviation from flowing national time, the author argues that Lapithi excavates alternative temporalities in perpetuity; whilst proposing that in the context of Cyprus the deterritorialization of space by time postpones the nation's identity.
文摘The understanding about the creation of our universe is explored in many philosophies, natural sciences, religions, ideologies, traditions, and disciplines. Current natural science cannot answer this question at the fundamental level. In this work, we combine the ancient Chinese Tao wisdom about the creation with quantum physics. We propose that everything comes from the emptiness. Our universe is manifested from the emptiness through two pairs of duality measurements: space and time duality pair and inclusion and exclusion duality pair. From this understanding, we are able to derive one mathematic formula describing our universe. It also yields a new metaphysical approach to derive and interpret string theory as well as produce more testable predictions from string theory. This work gives a new way to understand and mathematically describe how our universe is created and evolved. It provides another way to comprehend the meaning and function of space and time. It indicates that our universe is manifested from the emptiness through human actions. Space and time is a pair of duality action and codes that help manifest our universe. It provides answer to an important philosophical question about whether and why we can understand and mathematically describe our universe.
文摘A simple assumption for dark matter leads to magnetic-monopole-like terms to Maxwell’s Equations, a photon model with wave-particle duality, nuclear stability, a decelerating expansion of the universe, and a dark-matter relativity that defines the origin of space and time.
基金Project supported by the National High Technology Research and Development Program of China
文摘The remaining challenges, confronting high-power microwave (HPM) sources and pulsed power generators, stim- ulate the developments of robust relativistic electron beam sources. This paper presents a carbon fibre cathode which is tested in a single pulsed power generator. The distribution and the development of cathode plasma are observed by time-and-space resolved diagnostics, and the uniformity of electron beam density is checked by taking x-ray images. A quasistationary behaviour of cathode plasma expansion is observed. It is found that the uniformity of the extracted electron beam is satisfactory in spite of individual plasma jets on the cathode surface. These results show that carbon fibre cathodes can provide a positive prospect for developing a high-quality electron beam.
文摘In fundamental theories of physics, the dynamical equations all have time inversion invariance. Except for the evolution of some simple system which has realistic inverse processes, but for a slightly more complicated system, the evolution processes are irreversible. This is the problem of arrow of time, which is always warmly debated. In different point of view, we find there may have some conceptual misunderstanding in the controversy: 1) The realization of an inverse process does not mean the time of the system goes backward. 2) The principles of relativity and covariance are the constraints to physical laws, but not constraints to specific solutions. The equations must be covariant, but the solutions are not definitely symmetric. 3) Time is a global property of the universe, which is a measurement of the evolution process of the universe. The internal time of a matter system reflecting its internal evolution speed also takes this cosmic time as a unified background and standard of measurement. 4) The universe has a unified cosmic time T and a cosmic space related to this cosmic time. They are objective and absolute. 5) The eigensolution of a spinor is a critical state losing time concept, which responses the interaction of environment with some uncertainty, then the evolution process of the world is not uniquely determined. 6) The non-uniqueness of the evolution process means that the inverse process is absent. So for a world including spinors, the evolution is essentially irreversible. In this paper, according to the widely accepted principles and direct calculations of transformation, we reveal the misunderstandings in the usual controversy, and then give more natural and reasonable explanations for structure of space-time and arrow of time.
文摘In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived and some properties are discussed. Spherical symmetric solutions for the motion are illustrated and some interesting physical phenomena are discovered. The equations of the null membranes are derived and the exact solutions are also given. Spherical symmetric solutions for null membranes are just the two horizons of Reissner-NordstrSm space-time.
文摘One of the main problems of contemporary physics is to find a quantum description of gravity. This present approach attempts to remedy the problem through the quantization of a finite but large flat Minkowski space-time by means of Fourier expansion of the displacement four vector. By applying second quantization techniques, space-time emerges as a superposition of space-time eigen states or lattices of quantized space-time vibrations also known as gravitons. Each lattice element four vector is a graviton and traces out an elementary four volume (lattice cell). The stress-momentum tensor of each graviton defines its curvature and also the curvature of the associated lattice as described by General Relativity. The eigen states of space-time are found to be separated by a quantum of energy equal to the product of the Hubble constant and the Planck constant. The highest energy state is at Planck energies. This paper also shows that gravitons can be absorbed and emitted by the space-time lattice changing the volume of its primitive cells and that particles of observable matter are associated with a graviton whose frequency is equal to the particle’s Compton frequency which the lattice can absorb producing a perturbation in the lattice. The space-time lattice is found to be unstable and decays by radiating low energy gravitons of energy equal to the product of the Hubble constant and the Planck constant. This decay causes the space-time superstructure to expand. The graviton is seen a composite spin 2 particle made from a combination of spin half components of the displacement four vector elements. The spin symmetry of its constituent elements can breakdown to give rise to other vector or scalar bosons. Dark Matter is seen as a consequence of Bose-Einstein statistics of gravitons which results in some regions of the lattice having more energy than others.
文摘According to our hypothesis, at the very beginning of the Big Bang, a hyperenergetic spherical wave was created. We described its characteristics in our previous work, and the present work is based on them. Logically, we saw that in cosmic inflation the frequency of such a wave would decrease sharply. Based on the temperature that prevailed immediately after inflation according to the hot Big Bang model, we determined a measure of the size of the inflation in this model, in accordance with our hypothesis.
文摘A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.