Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The result...Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.展开更多
By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on ...By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.展开更多
In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar o...In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.展开更多
In the autumn of 2021, China’s precipitation appears the distribution characteristics of “more in the South and less in the north”. Compared with the same period in history, the precipitation is more. The analysis ...In the autumn of 2021, China’s precipitation appears the distribution characteristics of “more in the South and less in the north”. Compared with the same period in history, the precipitation is more. The analysis is based on a large-scale heavy precipitation weather process in the middle and late September. The atmospheric circulation situation and weather situation of this precipitation process are mainly discussed. The results show that the low-pressure trough between the Balkesh Lake and Baikal Lake area made the cold air move eastward, and the warm and humid air flow extending westward was conducive to the enhancement of precipitation. The anticyclone circulation in the Sea of Japan transported the cold and humid air to the northeast of China. The southeast air flow around the subtropical high in the Western Pacific, the southwest air flow in the bay of the Bengal Bay and the South China Sea met in the southwest to produce precipitation and continued to move northward. They merged with the cold and humid air flow in the Northeast in the north of the Yangtze River, resulting in large-scale precipitation in northern China.展开更多
Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangt...Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.展开更多
The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanza...The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanzania</span> (NCT) including Zanzibar was investigated. The uniqueness of the October to December, 2019 (OND) rainfall and the extension of the January to February, 2020 rainfall in Zanzibar which coincided with MAM 2020 rainfall was among the issues which prolonged MAM 2020 rainfall in NCT and Zanzibar. The National Center for Environmental Prediction (NCEP) in collaboration with National Center for Atmospheric Research (NCAR)</span><span style="font-family:"">.</span><span style="font-family:""> Reanalysis 1 datasets of <i>u</i> (zonal)</span><span style="font-family:""> </span><span style="font-family:"">and <i>v</i> (meridional)</span><span style="font-family:""> </span><span style="font-family:"">winds</span><span style="font-family:"">,</span><span style="font-family:""> sea surface temperatures anomalies, relative humidity, amount of precipitable water and ocean net flux were</span><span style="font-family:""><span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-attachment:initial;background-origin:initial;background-clip:initial;"> </span></span><span style="background-color:;"></span><span style="font-family:""><span style="background:yellow;"></span><span>analyzed. Other datasets include the Tanzania Meteorological Authority (TMA) observed rainfall</span> records</span><span style="font-family:"">,</span><span style="font-family:""> maximum and minimum temperature</span><span style="font-family:"">s</span><span style="font-family:"">. Moreover, <span>TMA and Intergovernmental Climate Prediction and Analysis Cente</span>r (ICPAC)</span><span style="font-family:"">.</span><span style="font-family:""> MAM 2020 rainfall and temperature forecast reports were interpreted. Gridded and observed datasets were calculated into monthly and seasonal averages. As for observed data, long</span><span style="font-family:"">-</span><span style="font-family:"">term monthly and MAM percentage changes were calculated. Besides, </span><span style="font-family:"">the </span><span style="font-family:"">correlation between rainfall anomalies with an area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> for defined regions and stations in Zanzibar w</span><span style="font-family:"">as</span><span style="font-family:""> performed. Lastly, the calculated monthly and seasonal rainfall was compared to MAM periods of 2016, 2017, 2018 and 2019. Results revealed that consecutive five MAM seasonal rainfall was among the highest ones in records with that of 2020 being exceptional. These MAM seasons had percentage contribution ranged from 68% - 212%, 150% - 304%, 22% - 163% and 57% - 170% for stations in Zanzibar and 130% - 230%, 57% - 168% and 230% - 706% for NCT station, respectively. Compared to previous MAM seasons of 2016-2019, MAM 2020 rainfall season was spatially well distributed in our study area with rainfall rang</span><span style="font-family:"">ing</span><span style="font-family:""> from 1200 to 2100 mm and up to 900 in most Zanzibar and NCT stations. Indeed, the study revealed that the observed highest rainfall and flooding was enhanced by wet seasons of MAM 2019, OND 2019 and DFJ (2019-2020). Other dynamics which accelerated MAM 2020 rainfall were the higher SST<sub>A</sub> ranged f<span>rom 0.5<span style="white-space:nowrap;">°</span>C - 1.5<span style="white-space:nowrap;">°</span>C and 1.5<span style="white-space:nowrap;">°</span>C - 2.5<span style="white-space:nowrap;">°</span>C over Southwestern Indian Ocean </span>(SWIO) and coastal Tanzania</span><span style="font-family:""> and</span><span style="font-family:""> the increased trend of area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> on various SWIO blocks. </span><span style="font-family:"">Besides,</span><span style="font-family:""> parameters including Rhum, PWR and wind regimes were supporting the MAM 2020 rainfall. The socio-economic implications of these rains were strong and spatially well distributed in Zanzibar. For instance, a death toll of about 10 people, </span><span style="font-family:"">a </span><span style="font-family:"">great number of road culverts were washed away, </span><span style="font-family:"">and </span><span style="font-family:"">about 3600 houses </span><span style="font-family:"">were </span><span style="font-family:"">fallen or damaged, leading to </span><span style="font-family:"">a </span><span style="font-family:"">significant number of homeless people. As for NCT</span><span style="font-family:"">,</span><span style="font-family:""> the catastrophes include loss of lives</span><span style="font-family:"">,</span><span style="font-family:""> increased water levels over Lake <span>Victoria leading to flooded islands and re</span></span><span style="font-family:""> </span><span style="font-family:"">allocation of more than 1000 </span><span style="font-family:"">people. In Kenya</span><span style="font-family:"">,</span><span style="font-family:""> more than 116 people died and 40,000 people were displaced. Conclusively</span><span style="font-family:"">,</span><span style="font-family:""> the study has shown the unique<span>ness (<i>i</i>.<i>e</i>.</span></span><span style="font-family:"">,</span><span style="font-family:""> strength and societal implications) of MAM 2020 compared to </span><span style="font-family:"">other seasons;hence more studies on understanding the factors affecting extreme rainfall seasons in East Africa are required</span><span style="font-family:"">.展开更多
Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation ...Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.展开更多
The study investigated the seasonal effects of weather elements on water table fluctuations in drinking wells in Nimikoro and Tankoro Chiefdoms in Kono District, Eastern Sierra Leone. The study specifically determined...The study investigated the seasonal effects of weather elements on water table fluctuations in drinking wells in Nimikoro and Tankoro Chiefdoms in Kono District, Eastern Sierra Leone. The study specifically determined the trends in precipitation, air temperature and relative humidity relative to water table depth and water volume in both manually dug and mechanically drilled water wells in the chiefdoms. The key objective was to provide a clear guide on sustainable well development and operation in the study area and beyond. To do so, the depth of each well was taken and the water table measured. Also, data on key weather elements such as precipitation, air temperature and relative humidity were collected on the 15<sup>th</sup> of every month for a period of one year. The data were analyzed on Excel, SPSS and ArcGIS platforms for monthly and seasonal trends in the time-space fabric. The results showed that the depth to water table was high in the dries (small well water volume) and low in the rains (large well water volume) for both manually dug and mechanically drilled wells. Well water temperature increased as temperature increased during the dry season but decreased as temperature decreased during the rainy season. The study showed that weather elements such as precipitation and temperature had direct impact on groundwater availability. This is critical for groundwater development and management in the study area and in Sierra Leone at large.展开更多
Scarabaeid beetles include quite a few key pests. The effects of climate factors on the occurrence of scarab were studied. The results showed that the correlation degree between the occurrence amount of Holotnchia obl...Scarabaeid beetles include quite a few key pests. The effects of climate factors on the occurrence of scarab were studied. The results showed that the correlation degree between the occurrence amount of Holotnchia oblita and precipitation was greater than that with air temperature. Especially, accumulated precipitation in Apdl had greater correlation with the occurrence amount of scarab.展开更多
Soil salinization,caused by salt migration and accumulation underneath the soil surface,will corrode structures.To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions,a math...Soil salinization,caused by salt migration and accumulation underneath the soil surface,will corrode structures.To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions,a mathematical model consisting of a series of theoretical equations is briefly presented.The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations.Besides,a transition equation to link the solute transport equation before and after salt precipitation is proposed.Meanwhile,a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation.The results show that the calculated values are in good agreement with the published experimental data,especially for the simulation of volume water content and evaporation rate of Toyoura sand,which confirm the reliability and applicability of the proposed model.展开更多
[Objective] The research aimed to examine climate change characteristics in western Qinling during 1967-2007. [Me^od] Based on the data of temperature, precipitation, sunshine duration, relative humidity and evaporati...[Objective] The research aimed to examine climate change characteristics in western Qinling during 1967-2007. [Me^od] Based on the data of temperature, precipitation, sunshine duration, relative humidity and evaporation capacity derived from 17 weather stations, we analyzed the climatic change characteristics in western Qinling in the past 41 years, r Result] Increase magnitude of the annual mean temperature was 0.30 ℃/10 a in the past 41 years. Annual precipitation averaged 802 mm and varied non-significantly during the 41 years, while precipitation in spring significantly decreased by 13.68 mm/10 a. Besides, annual sunshine duration and annual mean relative humidity both decreased non-significantly, in contrast to annual evaporation capacity which showed an insignificantly increasing trend. Compared among southern, central and northern areas of the western Qinling, annual mean temperature, precipitation and relative humidity showed decreasing trends from south to north, while annual sunshine duration and annual evaporation capacity showed inversely increasing trends. [ Condusionl Thus, our research could provide reference basis for ecosystem stability and related research in western Qinling.展开更多
The psyllid (Triozoida sp.) is the primary pest of guava tree in the Central Northern region of S?o Paulo State, Brazil. The variation of climatic factors may influence directly or indirectly the behavior of agricultu...The psyllid (Triozoida sp.) is the primary pest of guava tree in the Central Northern region of S?o Paulo State, Brazil. The variation of climatic factors may influence directly or indirectly the behavior of agricultural pests. The present work had objectives to evaluate the damages caused by psyllid in accesses of guava trees in order to identify materials with potential resistance to pest and the possible correlations of the damage with the meteorological factors, in an orchard of guava conducted in an organic system. Eighty-five guava accesses were evaluated. Each one was analyzed at random 10 leaves containing the symptom of the psyllid attack, through visual range of notes. The averages of the notes were compared by Scott-Knott test at 5% probability. The 25 accesses with the highest average damage of psyllid had the data submitted to correlation (Pearson), with the minimum and maximum temperature (°C), precipitation (mm) and relative humidity (%). Guava accesses used commercially were the most susceptible to the attack of psyllid, compared to the selections, with an emphasis to access “L4P14”, “L7P28” and “L8P32B”, which were the least attacked. The study of correlation between psyllid damages and meteorological factors, must be used the medium temperature, relative humidity and rainfall accumulated in the period of 14 days before the evaluations. There is a positive correlation between minimum temperasture, precipitation and relative humidity with the damage of psyllids in leaves of guava.展开更多
基金supported by the project of National Natural Science Foundation of China(No.41221064)
文摘Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.
文摘By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.
基金National Key Research and Development Program of China(2017YFC1404700,2018YFC1506905)Open Research Program of the State Key Laboratory of Severe Weather(2018LASW-B09,2018LASW-B08)+7 种基金Science and Technology Planning Project of Guangdong Province,China(2019B020208016,2018B020207012,2017B020244002)National Natural Science Foundation of China(41375038)Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GHY201506006)2017-2019Meteorological Forecasting Key Technology Development Special Grant(YBGJXM(2017)02-05)Guangdong Science&Technology Plan Project(2015A020217008)Zhejiang Province Major Science and Technology Special Project(2017C03035)Scientific and Technological Research Projects of Guangdong Meteorological Service(GRMC2018M10)Natural Science Foundation of Guangdong Province(2018A030313218)
文摘In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.
文摘In the autumn of 2021, China’s precipitation appears the distribution characteristics of “more in the South and less in the north”. Compared with the same period in history, the precipitation is more. The analysis is based on a large-scale heavy precipitation weather process in the middle and late September. The atmospheric circulation situation and weather situation of this precipitation process are mainly discussed. The results show that the low-pressure trough between the Balkesh Lake and Baikal Lake area made the cold air move eastward, and the warm and humid air flow extending westward was conducive to the enhancement of precipitation. The anticyclone circulation in the Sea of Japan transported the cold and humid air to the northeast of China. The southeast air flow around the subtropical high in the Western Pacific, the southwest air flow in the bay of the Bengal Bay and the South China Sea met in the southwest to produce precipitation and continued to move northward. They merged with the cold and humid air flow in the Northeast in the north of the Yangtze River, resulting in large-scale precipitation in northern China.
基金supported by the National Key Basic Research and Development Project of China(Grant No.2012CB417201)the National Natural Science Foundation of China(Grant Nos.41375053 and 41505038)
文摘Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.
文摘The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanzania</span> (NCT) including Zanzibar was investigated. The uniqueness of the October to December, 2019 (OND) rainfall and the extension of the January to February, 2020 rainfall in Zanzibar which coincided with MAM 2020 rainfall was among the issues which prolonged MAM 2020 rainfall in NCT and Zanzibar. The National Center for Environmental Prediction (NCEP) in collaboration with National Center for Atmospheric Research (NCAR)</span><span style="font-family:"">.</span><span style="font-family:""> Reanalysis 1 datasets of <i>u</i> (zonal)</span><span style="font-family:""> </span><span style="font-family:"">and <i>v</i> (meridional)</span><span style="font-family:""> </span><span style="font-family:"">winds</span><span style="font-family:"">,</span><span style="font-family:""> sea surface temperatures anomalies, relative humidity, amount of precipitable water and ocean net flux were</span><span style="font-family:""><span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-attachment:initial;background-origin:initial;background-clip:initial;"> </span></span><span style="background-color:;"></span><span style="font-family:""><span style="background:yellow;"></span><span>analyzed. Other datasets include the Tanzania Meteorological Authority (TMA) observed rainfall</span> records</span><span style="font-family:"">,</span><span style="font-family:""> maximum and minimum temperature</span><span style="font-family:"">s</span><span style="font-family:"">. Moreover, <span>TMA and Intergovernmental Climate Prediction and Analysis Cente</span>r (ICPAC)</span><span style="font-family:"">.</span><span style="font-family:""> MAM 2020 rainfall and temperature forecast reports were interpreted. Gridded and observed datasets were calculated into monthly and seasonal averages. As for observed data, long</span><span style="font-family:"">-</span><span style="font-family:"">term monthly and MAM percentage changes were calculated. Besides, </span><span style="font-family:"">the </span><span style="font-family:"">correlation between rainfall anomalies with an area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> for defined regions and stations in Zanzibar w</span><span style="font-family:"">as</span><span style="font-family:""> performed. Lastly, the calculated monthly and seasonal rainfall was compared to MAM periods of 2016, 2017, 2018 and 2019. Results revealed that consecutive five MAM seasonal rainfall was among the highest ones in records with that of 2020 being exceptional. These MAM seasons had percentage contribution ranged from 68% - 212%, 150% - 304%, 22% - 163% and 57% - 170% for stations in Zanzibar and 130% - 230%, 57% - 168% and 230% - 706% for NCT station, respectively. Compared to previous MAM seasons of 2016-2019, MAM 2020 rainfall season was spatially well distributed in our study area with rainfall rang</span><span style="font-family:"">ing</span><span style="font-family:""> from 1200 to 2100 mm and up to 900 in most Zanzibar and NCT stations. Indeed, the study revealed that the observed highest rainfall and flooding was enhanced by wet seasons of MAM 2019, OND 2019 and DFJ (2019-2020). Other dynamics which accelerated MAM 2020 rainfall were the higher SST<sub>A</sub> ranged f<span>rom 0.5<span style="white-space:nowrap;">°</span>C - 1.5<span style="white-space:nowrap;">°</span>C and 1.5<span style="white-space:nowrap;">°</span>C - 2.5<span style="white-space:nowrap;">°</span>C over Southwestern Indian Ocean </span>(SWIO) and coastal Tanzania</span><span style="font-family:""> and</span><span style="font-family:""> the increased trend of area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> on various SWIO blocks. </span><span style="font-family:"">Besides,</span><span style="font-family:""> parameters including Rhum, PWR and wind regimes were supporting the MAM 2020 rainfall. The socio-economic implications of these rains were strong and spatially well distributed in Zanzibar. For instance, a death toll of about 10 people, </span><span style="font-family:"">a </span><span style="font-family:"">great number of road culverts were washed away, </span><span style="font-family:"">and </span><span style="font-family:"">about 3600 houses </span><span style="font-family:"">were </span><span style="font-family:"">fallen or damaged, leading to </span><span style="font-family:"">a </span><span style="font-family:"">significant number of homeless people. As for NCT</span><span style="font-family:"">,</span><span style="font-family:""> the catastrophes include loss of lives</span><span style="font-family:"">,</span><span style="font-family:""> increased water levels over Lake <span>Victoria leading to flooded islands and re</span></span><span style="font-family:""> </span><span style="font-family:"">allocation of more than 1000 </span><span style="font-family:"">people. In Kenya</span><span style="font-family:"">,</span><span style="font-family:""> more than 116 people died and 40,000 people were displaced. Conclusively</span><span style="font-family:"">,</span><span style="font-family:""> the study has shown the unique<span>ness (<i>i</i>.<i>e</i>.</span></span><span style="font-family:"">,</span><span style="font-family:""> strength and societal implications) of MAM 2020 compared to </span><span style="font-family:"">other seasons;hence more studies on understanding the factors affecting extreme rainfall seasons in East Africa are required</span><span style="font-family:"">.
基金Supported by Open Research Fund Project of Key Laboratory of Meteorology and Ecological Environment of Hebei Province(Z202001Z,Z201602Z)Science and Technology Collaborative Innovation Fund Project in Bohai Rim Region(QYXM202004)Key Projects of Tianjin Meteorological Bureau(201801zdxm01)。
文摘Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.
文摘The study investigated the seasonal effects of weather elements on water table fluctuations in drinking wells in Nimikoro and Tankoro Chiefdoms in Kono District, Eastern Sierra Leone. The study specifically determined the trends in precipitation, air temperature and relative humidity relative to water table depth and water volume in both manually dug and mechanically drilled water wells in the chiefdoms. The key objective was to provide a clear guide on sustainable well development and operation in the study area and beyond. To do so, the depth of each well was taken and the water table measured. Also, data on key weather elements such as precipitation, air temperature and relative humidity were collected on the 15<sup>th</sup> of every month for a period of one year. The data were analyzed on Excel, SPSS and ArcGIS platforms for monthly and seasonal trends in the time-space fabric. The results showed that the depth to water table was high in the dries (small well water volume) and low in the rains (large well water volume) for both manually dug and mechanically drilled wells. Well water temperature increased as temperature increased during the dry season but decreased as temperature decreased during the rainy season. The study showed that weather elements such as precipitation and temperature had direct impact on groundwater availability. This is critical for groundwater development and management in the study area and in Sierra Leone at large.
基金Supported by Chinese Academy of Sciences"Western Light"Training Plan Projects(2007DF03)Scientific and Technological Project in Shaanxi Province(2005K16-G2(9))Research Projects in Academy of Scientific,Shaanxi Province(2006K-15,2009K-13)~~
文摘Scarabaeid beetles include quite a few key pests. The effects of climate factors on the occurrence of scarab were studied. The results showed that the correlation degree between the occurrence amount of Holotnchia oblita and precipitation was greater than that with air temperature. Especially, accumulated precipitation in Apdl had greater correlation with the occurrence amount of scarab.
基金the National Key Research and Development Program of China(Grant No.2018YFC0809605)the National Natural Science Foundation of China(Grant Nos.41230630,41601074)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC015)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZT-23).
文摘Soil salinization,caused by salt migration and accumulation underneath the soil surface,will corrode structures.To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions,a mathematical model consisting of a series of theoretical equations is briefly presented.The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations.Besides,a transition equation to link the solute transport equation before and after salt precipitation is proposed.Meanwhile,a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation.The results show that the calculated values are in good agreement with the published experimental data,especially for the simulation of volume water content and evaporation rate of Toyoura sand,which confirm the reliability and applicability of the proposed model.
基金Supported by Special Item of Basic Science Research Business in Central-level Public Research Institutes,China(2009KYYW12,2007KYYW04)
文摘[Objective] The research aimed to examine climate change characteristics in western Qinling during 1967-2007. [Me^od] Based on the data of temperature, precipitation, sunshine duration, relative humidity and evaporation capacity derived from 17 weather stations, we analyzed the climatic change characteristics in western Qinling in the past 41 years, r Result] Increase magnitude of the annual mean temperature was 0.30 ℃/10 a in the past 41 years. Annual precipitation averaged 802 mm and varied non-significantly during the 41 years, while precipitation in spring significantly decreased by 13.68 mm/10 a. Besides, annual sunshine duration and annual mean relative humidity both decreased non-significantly, in contrast to annual evaporation capacity which showed an insignificantly increasing trend. Compared among southern, central and northern areas of the western Qinling, annual mean temperature, precipitation and relative humidity showed decreasing trends from south to north, while annual sunshine duration and annual evaporation capacity showed inversely increasing trends. [ Condusionl Thus, our research could provide reference basis for ecosystem stability and related research in western Qinling.
基金We thank the Fundação de Amparo a Pesquisa do Estado de São Paulo(FAPESP),by financial assistance in the conduct of this work(Process 2012/03807-0).
文摘The psyllid (Triozoida sp.) is the primary pest of guava tree in the Central Northern region of S?o Paulo State, Brazil. The variation of climatic factors may influence directly or indirectly the behavior of agricultural pests. The present work had objectives to evaluate the damages caused by psyllid in accesses of guava trees in order to identify materials with potential resistance to pest and the possible correlations of the damage with the meteorological factors, in an orchard of guava conducted in an organic system. Eighty-five guava accesses were evaluated. Each one was analyzed at random 10 leaves containing the symptom of the psyllid attack, through visual range of notes. The averages of the notes were compared by Scott-Knott test at 5% probability. The 25 accesses with the highest average damage of psyllid had the data submitted to correlation (Pearson), with the minimum and maximum temperature (°C), precipitation (mm) and relative humidity (%). Guava accesses used commercially were the most susceptible to the attack of psyllid, compared to the selections, with an emphasis to access “L4P14”, “L7P28” and “L8P32B”, which were the least attacked. The study of correlation between psyllid damages and meteorological factors, must be used the medium temperature, relative humidity and rainfall accumulated in the period of 14 days before the evaluations. There is a positive correlation between minimum temperasture, precipitation and relative humidity with the damage of psyllids in leaves of guava.