The concept of fault junction is proposed to describe the relationship between the two faults by the authors. The junction relationship between Ganjiang and Tanlu faults is analyzed in this paper, and this has been el...The concept of fault junction is proposed to describe the relationship between the two faults by the authors. The junction relationship between Ganjiang and Tanlu faults is analyzed in this paper, and this has been elucidated through numerical simulation about the tectonic stress field analysis. Numerical simulation of the tectonic stress field conducted for the major mineralization stage of the Jiujiang-Ruichang junction area reveals that the stress field of the junction structure at the major mineralization stage shows a relatively close relationship with the formation of the ore deposits (occurrences).展开更多
The Zargat Na’am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by...The Zargat Na’am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W, and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills. The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations ({1.5} wt% Zr, {0.25} wt% Nb, {0.6} wt% ∑REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartz-hosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750×10+{-6}), Zr (2500×10+{-6}) and REEs (1450×10+{-6}). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.展开更多
The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present ...The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present study, the mineralization age of the Wurinitu deposit is constrained to 137.3 ± 1.3 to 131.9 ± 1.5 Ma based on a combination of the laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating of the mineralization related fine-grained monzonitic granite and the post-mineralization granite porphyry. The results of zircon Lu–Hf isotopes, combined with the geochemical characteristics of the granites in the S-EDMB, suggest that the Wurinitu Mo deposit was formed in an extensional environment in relation to the subduction of the Paleo-Pacific plate in late Mesozoic. The Wurinitu deposit shares similarities with the classical Climax-type porphyry molybdenum deposits in tectonic setting, mineral assemblages, and metal zonation.展开更多
The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater ...The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma.展开更多
The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic ...The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.展开更多
Bulk-rock elements,isotopes,and zircon U–Pb ages are reported for magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,China.Zircon U–Pb dating identified four stages of magmatis...Bulk-rock elements,isotopes,and zircon U–Pb ages are reported for magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,China.Zircon U–Pb dating identified four stages of magmatism:Late Silurian gabbroic diorite(*420 Ma),Middle Permian monzonite(*274 Ma),Late Jurassic quartz porphyry and ignimbrite,breccia tuff(153–158 Ma)and Early Cretaceous andesitic porphyrite(*127 Ma).Integrating field observations,geochronology,and element and isotope geochemistry indicated a complex petrogenetic history of the magmatic rocks.The gabbroic diorite may have been sourced from EM1-type mantle.The source of the monzonite may have been mantle metasomatized by melt from the subducting plate.The Jurassic volcaniclastic rocks formed in a medium-pressure,high-temperature environment,possibly in the background of crustal thickening in a syncollisional stage and an early postcollisional stage.During this process,shaly sedimentary rocks were brought into the deep crust and heated,followed by the rapid isostatic uplift of the crust,which caused partial melting of the sedimentary rocks.Quartz monzonite porphyry and quartz porphyry formed by partial melting of mantle metasomatized by subducted sediments,but the quartz porphyry experienced high-degree differentiation and evolution.The andesitic porphyrite has characteristics similar to those of Permian monzonite,indicating that its source area was also the zone of mantle metasomatized by subducted sediment.The late Silurian and Permian magmatic rocks in this area most likely formed against a continental arc background related to the subduction of the Paleo-Asian Ocean Plate beneath the North China Plate.The Late Jurassic magmatic rocks suggest that the northern margin of the North China Craton may have been in a postcollisional setting during the Late Jurassic,with no obvious crustal thinning.The Cretaceous andesitic porphyrite may have formed against the background of lithospheric extension and thinning.According to the comprehensive analysis of geological characteristics,diagenetic and metallogenic epochs,and Pb isotope data,the formation of ore bodies in the Dongzi–Changhanboluo ore district was closely related to the Jurassic quartz porphyry.展开更多
The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in rece...The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.展开更多
A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency...A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency and profitability under intercropping conditions. Seven treatments included five treatments (90 kg nitrogen “N” + 30 m3 farm yard manure “FYM”/fad, 80 kg N +30 m3 FYM/fad, 70 kg N +30 m3 FYM/fad and 400 g of Cerealine + 30 m3 FYM/fad for intercropping faba bean cultivar Spanish with sugar beet cultivar Gloria) and two treatments (90 and 20 kg N/fad for solid culture of sugar beet and faba bean, respectively, as recommended mineral N fertilizer rate) were compared in a randomized complete block design with three replications. Solid culture of sugar beet with the application of recommended rate (90 kg N/fad) gave the highest top, root and sugar yields/fad, as well as the percentage of purity compared with the other treatments in both seasons. Intercropping faba bean with sugar beet plants with application of 90 kg N + 30 m3 FYM/fad gave the highest number of leaves/plant, leaf area/plant, root length, root diameter and root weight/plant followed by intercropped sugar beet plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. On the other hand, intercropped sugar beet that received 400 g of Cerealine + 30 m3 FYM/fad had the highest percentages of T.S.S. and sucrose followed by 70 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. Solid culture of faba bean with the application of 20 kg N/fad gave the highest plant height, number of seeds/pod and seed yield/fad, meanwhile the highest number of branches/plant and pod length were achieved by intercropping faba bean with sugar beet with application of 90 kg N + 30 m3 FYM/fad followed by intercropped faba bean plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. However, intercropped faba bean plants that fertilized with 70 kg N + 30 m3 FYM/fad gave the highest number of pods per plant, number of seeds per pod, seed index and seed yield per plant compared with the other treatments in both seasons. Land equivalent ratio (LER), land equivalent coefficient (LEC) and relative crowding coefficient (RCC) were high by intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad indicating yield advantage was achieved. The value of aggressivity (Agg) of sugar beet was negative for all combinations indicating that sugar beet is dominated component in the present study. Intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad achieved higher total income and monetary advantage index (MAI) than the other treatments. Growing sugar beet plants in both sides of beds (1.2 m width) with one faba bean row in middle of sugar beet beds with the application of 80 kg N + 30 m3 FYM/fad decreased mineral N fertilizer rate by 10.00% of the recommended sugar beet mineral N fertilizer rate, as well as increased land usage and profitability for Egyptian farmers compared with sugar beet solid culture.展开更多
The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonic...The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonically fractured parts of the Florina granite and became enriched in iron, thorium, uranium, zircon and rare-earth elements. The most abundant alteration minerals are sericite and quartz, while the minerals of the mineralization bands include magnetite, hematite, thorite, monazite and zircon. The outer parts of the Oxia granite made it easy the percolation of hydrothermal solutions from the deeper heater to the upper cooler parts of the granite which acted as a hot spot.展开更多
Pitchblende mineralization was studied in the younger granite samples collected from Gabal Gattar, north Eastern Desert, Egypt using electron scanning microscope (ESM) and electron probe microanalyses (EPMA). This stu...Pitchblende mineralization was studied in the younger granite samples collected from Gabal Gattar, north Eastern Desert, Egypt using electron scanning microscope (ESM) and electron probe microanalyses (EPMA). This study revealed that this pitchblende contains significant Zr content reaching up to (66.80% ZrO2), which suggests that volcanic rocks were probably the source of such a deposit. High level emplaced high-K Calc-alkaline plutons as Qattar granite may have been associated with their volcanic equivalent emplaced in the surrounding area or now eroded. Lead content of the pitchblende mineralization is high and with moderate volcanics (up to 7.71% PbO). In contrast, it is low in ThO2, Y2O3 and REE2O3. High Zr and Pb content associated with pitchblende mineralization from Gattar granite indicates that the source of this mineralization derived from volcanic magma not from granitic magma. According to the calculation of U-Pb chemical ages using U, Th and Pb content measured with an electron microprobe for this pitchblende yielded ages within 543 - 657 Ma indicating a Pan-African age for this mineralization. This is the first time that a Pan-African age (543 to 657 Ma) is recorded for a U-mineralization in Gabal Gattar younger granite in the north Eastern Desert, Egypt.展开更多
Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglon...Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo-oil reservoir. We used the Re-Os dating method to determine the age of the bitumen from this paleo-oil reservoir, and obtained an isochron age of 254.3~2.8 Ma. The age indicates that the oil- generation from source rock occurred in the early Late Permian, earlier than the Sb mineralization age (-148~8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo-oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo-gas reservoir. The hydrocarbons (including CH4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil-gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.展开更多
Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the re...Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47-78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation.展开更多
The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Iminer...The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.展开更多
Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maob...Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragnelss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragnelss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff.展开更多
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts ...The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.展开更多
Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the effi...Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the efficiency in zircon separation by an order of magnitude, we have designed/developed a new machine-an automatic zircon separator(AZS). This is designed particularly for automatic pick-up of100 μm-sized zircon grains out of a heavy mineral fraction after conventional separation procedures. The AZS operates in three modes:(1) image processing to choose targeted individual zircon grains out of all heavy minerals spread on a tray,(2) automatic capturing of the individual zircon grains with microtweezers, and(3) placing them one-by-one in a coordinated alignment on a receiving tray. The automatic capturing was designed/created for continuous mineral selecting without human presence for many hours. This software also enables the registration of each separated zircon grain for dating, by recording digital photo-image, optical(color) indices, and coordinates on a receiving tray. We developed two new approaches for the dating; i.e.(1) direct dating of zircons selected by LA-ICPMS without conventional resin-mounting/polishing,(2) high speed U-Pb dating, combined with conventional sample preparation procedures using the new equipment with multiple-ion counting detectors(LA-MIC-ICPMS).With the first approach, Pb-Pb ages obtained from the surface of a mineral were crosschecked with the interior of the same grain after resin-mounting/polishing. With the second approach, the amount of time required for dating one zircon grain is ca. 20 s, and a sample throughput of 〉150 grains per hour can be achieved with sufficient precision(ca. 0.5%).We tested the practical efficiency of the AZS, by analyzing an Archean Jack Hills conglomerate in Western Australia with the known oldest(〉4.3 Ga) zircon on Earth. Preliminary results are positive; we were able to obtain more than 194 zircons that are over 4.0 Ga out of ca. 3800 checked grains, and 9 grains were over 4300 Ma with the oldest at 4371 ± 7 Ma. This separation system by AZS, combined with the new approaches, guarantees much higher yield in the hunt for old zircons.展开更多
The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masse...The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.展开更多
The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we car...The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 ? 4 Ma for the cores and 508 ? 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 ? 3 Ma for a coarse-grained felsic orthogneiss and 507 ? 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane. The absence of evidence for a Grenville-aged (i.e., Late Mesoproterozoic/Early Neoproterozoic) metamorphic event indicates that the Grove Mountains have experienced only a single metamorphic cycle, i.e., Pan-African-aged, which distinguishes them from other polymetamorphic terranes in the Prydz Belt. This will provide important constraints on the controversial nature of the Prydz Belt.展开更多
Objective The Youjiang basin,also named"Dian-Qian-Gui Golden Triangle",contains a cluster of Carlin-like gold deposits(Deng and Wang,2016).Due to the uncertainty of mineralization age and the absence of coet...Objective The Youjiang basin,also named"Dian-Qian-Gui Golden Triangle",contains a cluster of Carlin-like gold deposits(Deng and Wang,2016).Due to the uncertainty of mineralization age and the absence of coetaneous magmatic rocks(Chen et al.,2015),the relationship between magmatism and Au mineralization still remains controversial in recent years(Hou et al.,2016).The Late展开更多
文摘The concept of fault junction is proposed to describe the relationship between the two faults by the authors. The junction relationship between Ganjiang and Tanlu faults is analyzed in this paper, and this has been elucidated through numerical simulation about the tectonic stress field analysis. Numerical simulation of the tectonic stress field conducted for the major mineralization stage of the Jiujiang-Ruichang junction area reveals that the stress field of the junction structure at the major mineralization stage shows a relatively close relationship with the formation of the ore deposits (occurrences).
文摘The Zargat Na’am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W, and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills. The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations ({1.5} wt% Zr, {0.25} wt% Nb, {0.6} wt% ∑REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartz-hosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750×10+{-6}), Zr (2500×10+{-6}) and REEs (1450×10+{-6}). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.
基金the joint financial support from the National Natural Science Foundation of China(No 41302263)a research project on “Quantitative models for prediction of strategic mineral resources in China”(201211022)by China Geological Survey
文摘The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present study, the mineralization age of the Wurinitu deposit is constrained to 137.3 ± 1.3 to 131.9 ± 1.5 Ma based on a combination of the laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating of the mineralization related fine-grained monzonitic granite and the post-mineralization granite porphyry. The results of zircon Lu–Hf isotopes, combined with the geochemical characteristics of the granites in the S-EDMB, suggest that the Wurinitu Mo deposit was formed in an extensional environment in relation to the subduction of the Paleo-Pacific plate in late Mesozoic. The Wurinitu deposit shares similarities with the classical Climax-type porphyry molybdenum deposits in tectonic setting, mineral assemblages, and metal zonation.
基金sponsored by the National Key R&D Programme of China(2021YFC2901803)National Natural Science Foundation of China(92055314 and 41802095)+2 种基金the China Geological Survey(DD20230049 and DD20220983)is a contribution to the International Geoscience Programme(IGCP-741)Academician Bao-jun Liu Foundation of Southwest Geological Science and Technology Innovation Center.
文摘The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma.
文摘The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.
基金financially supported by the National Natural Science Foundation of China(No.41602101)。
文摘Bulk-rock elements,isotopes,and zircon U–Pb ages are reported for magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,China.Zircon U–Pb dating identified four stages of magmatism:Late Silurian gabbroic diorite(*420 Ma),Middle Permian monzonite(*274 Ma),Late Jurassic quartz porphyry and ignimbrite,breccia tuff(153–158 Ma)and Early Cretaceous andesitic porphyrite(*127 Ma).Integrating field observations,geochronology,and element and isotope geochemistry indicated a complex petrogenetic history of the magmatic rocks.The gabbroic diorite may have been sourced from EM1-type mantle.The source of the monzonite may have been mantle metasomatized by melt from the subducting plate.The Jurassic volcaniclastic rocks formed in a medium-pressure,high-temperature environment,possibly in the background of crustal thickening in a syncollisional stage and an early postcollisional stage.During this process,shaly sedimentary rocks were brought into the deep crust and heated,followed by the rapid isostatic uplift of the crust,which caused partial melting of the sedimentary rocks.Quartz monzonite porphyry and quartz porphyry formed by partial melting of mantle metasomatized by subducted sediments,but the quartz porphyry experienced high-degree differentiation and evolution.The andesitic porphyrite has characteristics similar to those of Permian monzonite,indicating that its source area was also the zone of mantle metasomatized by subducted sediment.The late Silurian and Permian magmatic rocks in this area most likely formed against a continental arc background related to the subduction of the Paleo-Asian Ocean Plate beneath the North China Plate.The Late Jurassic magmatic rocks suggest that the northern margin of the North China Craton may have been in a postcollisional setting during the Late Jurassic,with no obvious crustal thinning.The Cretaceous andesitic porphyrite may have formed against the background of lithospheric extension and thinning.According to the comprehensive analysis of geological characteristics,diagenetic and metallogenic epochs,and Pb isotope data,the formation of ore bodies in the Dongzi–Changhanboluo ore district was closely related to the Jurassic quartz porphyry.
基金funded by the Natural Science Foundation of China (No. U1303292)the Science and Technology Support Program of China (No. 2011BAB06B02)the China Geology Survey Program (No. 121211220926)
文摘The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.
文摘A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency and profitability under intercropping conditions. Seven treatments included five treatments (90 kg nitrogen “N” + 30 m3 farm yard manure “FYM”/fad, 80 kg N +30 m3 FYM/fad, 70 kg N +30 m3 FYM/fad and 400 g of Cerealine + 30 m3 FYM/fad for intercropping faba bean cultivar Spanish with sugar beet cultivar Gloria) and two treatments (90 and 20 kg N/fad for solid culture of sugar beet and faba bean, respectively, as recommended mineral N fertilizer rate) were compared in a randomized complete block design with three replications. Solid culture of sugar beet with the application of recommended rate (90 kg N/fad) gave the highest top, root and sugar yields/fad, as well as the percentage of purity compared with the other treatments in both seasons. Intercropping faba bean with sugar beet plants with application of 90 kg N + 30 m3 FYM/fad gave the highest number of leaves/plant, leaf area/plant, root length, root diameter and root weight/plant followed by intercropped sugar beet plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. On the other hand, intercropped sugar beet that received 400 g of Cerealine + 30 m3 FYM/fad had the highest percentages of T.S.S. and sucrose followed by 70 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. Solid culture of faba bean with the application of 20 kg N/fad gave the highest plant height, number of seeds/pod and seed yield/fad, meanwhile the highest number of branches/plant and pod length were achieved by intercropping faba bean with sugar beet with application of 90 kg N + 30 m3 FYM/fad followed by intercropped faba bean plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. However, intercropped faba bean plants that fertilized with 70 kg N + 30 m3 FYM/fad gave the highest number of pods per plant, number of seeds per pod, seed index and seed yield per plant compared with the other treatments in both seasons. Land equivalent ratio (LER), land equivalent coefficient (LEC) and relative crowding coefficient (RCC) were high by intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad indicating yield advantage was achieved. The value of aggressivity (Agg) of sugar beet was negative for all combinations indicating that sugar beet is dominated component in the present study. Intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad achieved higher total income and monetary advantage index (MAI) than the other treatments. Growing sugar beet plants in both sides of beds (1.2 m width) with one faba bean row in middle of sugar beet beds with the application of 80 kg N + 30 m3 FYM/fad decreased mineral N fertilizer rate by 10.00% of the recommended sugar beet mineral N fertilizer rate, as well as increased land usage and profitability for Egyptian farmers compared with sugar beet solid culture.
文摘The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonically fractured parts of the Florina granite and became enriched in iron, thorium, uranium, zircon and rare-earth elements. The most abundant alteration minerals are sericite and quartz, while the minerals of the mineralization bands include magnetite, hematite, thorite, monazite and zircon. The outer parts of the Oxia granite made it easy the percolation of hydrothermal solutions from the deeper heater to the upper cooler parts of the granite which acted as a hot spot.
文摘Pitchblende mineralization was studied in the younger granite samples collected from Gabal Gattar, north Eastern Desert, Egypt using electron scanning microscope (ESM) and electron probe microanalyses (EPMA). This study revealed that this pitchblende contains significant Zr content reaching up to (66.80% ZrO2), which suggests that volcanic rocks were probably the source of such a deposit. High level emplaced high-K Calc-alkaline plutons as Qattar granite may have been associated with their volcanic equivalent emplaced in the surrounding area or now eroded. Lead content of the pitchblende mineralization is high and with moderate volcanics (up to 7.71% PbO). In contrast, it is low in ThO2, Y2O3 and REE2O3. High Zr and Pb content associated with pitchblende mineralization from Gattar granite indicates that the source of this mineralization derived from volcanic magma not from granitic magma. According to the calculation of U-Pb chemical ages using U, Th and Pb content measured with an electron microprobe for this pitchblende yielded ages within 543 - 657 Ma indicating a Pan-African age for this mineralization. This is the first time that a Pan-African age (543 to 657 Ma) is recorded for a U-mineralization in Gabal Gattar younger granite in the north Eastern Desert, Egypt.
基金financially supported by Natural Science Foundation of China (No.41362007)The Research of Scientific Base of Typical Metal Mineral from the Ministry of Land and Resources (No.20091107)the Research Project on the Metallogenic Regularity of the Typical Strata Controlled Deposits of National Crisis Mines in Southwest China (No.20089943)
文摘Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo-oil reservoir. We used the Re-Os dating method to determine the age of the bitumen from this paleo-oil reservoir, and obtained an isochron age of 254.3~2.8 Ma. The age indicates that the oil- generation from source rock occurred in the early Late Permian, earlier than the Sb mineralization age (-148~8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo-oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo-gas reservoir. The hydrocarbons (including CH4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil-gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.
基金supported by Grant 81570806 from the National Natural Science Foundation of China
文摘Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47-78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation.
基金financially supported by the Key R&D Program of China(Grant No.2017YFC0602402)the Innovationdriven Plan of Central South University,China(Grant No.2015CX008)+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M622597)Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(Grant No.2019YSJS23)the Natural Science Foundation of Hunan Province(Grant No.2017JJ3138)
文摘The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.
基金funded by the National Natural Science Foundation of China(grant No.40399143)the National 973 Project of the Chinese Ministry of Science and Technology(grant No.2003CB716502)the Programme of Excellent Youth Scientists of the Ministry of Land and Resources of China.
文摘Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragnelss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragnelss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff.
基金supported financially by the National Natural Scientific Foundation of China (Grants No. 40872069 and 41173059)the National Basic Research Program of China (973 Program) (Grants No. 2015CB453000)+1 种基金China Geological Survey (Grants No. 12120113095500)the Foundation of China Nuclear Geology (Grants No. 201148)
文摘The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.
基金supported by the Grant-in-Aid from Japan Society of the Promotion for Science (JSPS KAKAENHI New Academic Research No. 26106005)
文摘Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the efficiency in zircon separation by an order of magnitude, we have designed/developed a new machine-an automatic zircon separator(AZS). This is designed particularly for automatic pick-up of100 μm-sized zircon grains out of a heavy mineral fraction after conventional separation procedures. The AZS operates in three modes:(1) image processing to choose targeted individual zircon grains out of all heavy minerals spread on a tray,(2) automatic capturing of the individual zircon grains with microtweezers, and(3) placing them one-by-one in a coordinated alignment on a receiving tray. The automatic capturing was designed/created for continuous mineral selecting without human presence for many hours. This software also enables the registration of each separated zircon grain for dating, by recording digital photo-image, optical(color) indices, and coordinates on a receiving tray. We developed two new approaches for the dating; i.e.(1) direct dating of zircons selected by LA-ICPMS without conventional resin-mounting/polishing,(2) high speed U-Pb dating, combined with conventional sample preparation procedures using the new equipment with multiple-ion counting detectors(LA-MIC-ICPMS).With the first approach, Pb-Pb ages obtained from the surface of a mineral were crosschecked with the interior of the same grain after resin-mounting/polishing. With the second approach, the amount of time required for dating one zircon grain is ca. 20 s, and a sample throughput of 〉150 grains per hour can be achieved with sufficient precision(ca. 0.5%).We tested the practical efficiency of the AZS, by analyzing an Archean Jack Hills conglomerate in Western Australia with the known oldest(〉4.3 Ga) zircon on Earth. Preliminary results are positive; we were able to obtain more than 194 zircons that are over 4.0 Ga out of ca. 3800 checked grains, and 9 grains were over 4300 Ma with the oldest at 4371 ± 7 Ma. This separation system by AZS, combined with the new approaches, guarantees much higher yield in the hunt for old zircons.
文摘The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.
基金financial support from the National Natural Science Foundation of China (Grant no.41530209)the Central Public-Interest Scientific Institution Basal Research Fund (Grant no.JYYWF201819)
文摘The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 ? 4 Ma for the cores and 508 ? 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 ? 3 Ma for a coarse-grained felsic orthogneiss and 507 ? 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane. The absence of evidence for a Grenville-aged (i.e., Late Mesoproterozoic/Early Neoproterozoic) metamorphic event indicates that the Grove Mountains have experienced only a single metamorphic cycle, i.e., Pan-African-aged, which distinguishes them from other polymetamorphic terranes in the Prydz Belt. This will provide important constraints on the controversial nature of the Prydz Belt.
文摘Objective The Youjiang basin,also named"Dian-Qian-Gui Golden Triangle",contains a cluster of Carlin-like gold deposits(Deng and Wang,2016).Due to the uncertainty of mineralization age and the absence of coetaneous magmatic rocks(Chen et al.,2015),the relationship between magmatism and Au mineralization still remains controversial in recent years(Hou et al.,2016).The Late