Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majori...Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.展开更多
It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being to...It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being totally sure of the consistency of the thermodynamic theory, despite the fact that its practical usefulness is indisputable. The present paper deals with this interesting question and leads to the idea that there is an imperfect convergence between the way of using the thermodynamic tool and the way of understanding its significance. Illustrated by a very simple example, the discussion can be followed by every scientist having the fundamental basis in thermodynamics. The suggested hypothesis is that the Einstein mass-energy relation is closely associated to the concept of entropy, opening a link between thermodynamics and relativity.展开更多
It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order ...It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.展开更多
Although there are many measures of variability for qualitative variables, they are little used in social research, nor are they included in statistical software. The aim of this article is to present six measures of ...Although there are many measures of variability for qualitative variables, they are little used in social research, nor are they included in statistical software. The aim of this article is to present six measures of variation for qualitative variables of simple calculation, as well as to facilitate their use by means of the R software. The measures considered are, on the one hand, Freemans variation ratio, Morals universal variation ratio, Kvalseths standard deviation from the mode, and Wilcoxs variation ratio which are most affected by proximity to a constant random variable, where the measures of variability for qualitative variables reach their minimum value of 0. On the other hand, the Gibbs-Poston index of qualitative variation and Shannons relative entropy are included, which are more affected by the proximity to a uniform distribution, where the measures of variability for qualitative variables reach their maximum value of 1. Point and interval estimation are addressed. Bootstrap by the percentile and bias-corrected and accelerated percentile methods are used to obtain confidence intervals. Two calculation situations are presented: with a sample mode and with two or more modes. The standard deviation from the mode among the six considered measures, and the universal variation ratio among the three variation ratios, are particularly recommended for use.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with on...The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with one another if they are not connected to relativity. The solution proposed consists of inserting the Einstein mass-energy relation into a general equation that associates both laws. The second part deals with some consequences of this new insight and its possible link with gravitation. Despite a slight modification of the usual reasoning, the suggested hypothesis leads to a simplification and extension of the thermodynamic theory and to the idea that relativity is omnipresent around us.展开更多
The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into ac...The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.展开更多
Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive ...Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive and scientific intelligent evaluation of the system,this paper proposes an evaluation model based on combination entropy weight rank order-technique for order preference by similarity to an ideal solution(TOPSIS)and Niche Immune Lion Algorithm-Extreme Learning Machine with Kernel(NILAKELM).Firstly,the sustainability evaluation indicator system of the regional microgrid interconnection system is constructed fromfour aspects of economic,environmental,social,and technical characteristics,and the evaluation indicators are explained.Then,the classical evaluationmodel based on TOPSIS is constructed,and the entropy weight method and rank order method(RO)are coupled to obtain the indicator weight.The niche immune algorithm is used to improve the lion algorithm,and the improved lion algorithm is used to optimize the parameters of KELM,and the intelligent evaluation model based on NILA-KELM is obtained to realize fast real-time calculation.Finally,the scientificity and accuracy of themodel proposed in this paper are verified.The model proposed in this paper has the lowest RMSE,MAE and RE values,indicating that its intelligent evaluation results are the most accurate.This study is conducive to the horizontal comparison of the overall performance of regional microgrid interconnection system projects,helps investors to choose the most promising project scheme,and helps the government to find feasible project.展开更多
In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then...In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.展开更多
Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals wi...Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals with the insertion of this concept into the basic equations of thermodynamics.展开更多
In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and ...In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and further proposed a method to determine the QCD gas effective mass based on a pseudo-first order β decay reaction kinetics. In a second paper, we proposed a method to determine if the QCD gas density on black hole ergospheres grows in time and hence their ergoregions act as matter reactors that break matter and antimatter symmetry by trapping antimatter particles. In this paper, we suggest that quark and antiquark pair exchange reactions between particles and the QCD gas may accelerate or decelerate particles and that the quarks and antiquarks numbers are strictly conserved in these pair exchange reactions. We further suggest that antimatter plays a principal role in the universe and is inseparable from both matter, via Dirac’ spinors, and space, via the quarks and antiquarks pair exchange reactions with the QCD gas;however with a singular exception, black hole ergospheres separate and black hole ergoregions trap antimatter particles.展开更多
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap ...This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap between general relativity and quantum mechanics, offering a unified framework that incorporates the geometric properties of spacetime with fundamental aspects of quantum information theory. The theoretical implications of this approach include potential resolutions to longstanding issues like the black hole information paradox and new perspectives on dark energy. The paper presents modified versions of classical solutions such as the Schwarzschild metric and Friedmann equations, incorporating quantum corrections. It also outlines testable predictions in areas including gravitational wave propagation, black hole shadows, and cosmological observables. We propose several avenues for future research, including exploring connections with other quantum gravity approaches designing experiments to test the theory’s predictions. This work contributes to the ongoing exploration of quantum gravity, offering a framework that potentially unifies general relativity and quantum mechanics with testable predictions.展开更多
Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequen...Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.展开更多
In this communication, we consider and study a generalized two parameters entropy of order statistics and derive bounds for it. The generalized residual entropy using order statistics has also been discussed.
Many researchers measure the uncertainty of a random variable using quantile-based entropy techniques.These techniques are useful in engineering applications and have some exceptional characteristics than their distri...Many researchers measure the uncertainty of a random variable using quantile-based entropy techniques.These techniques are useful in engineering applications and have some exceptional characteristics than their distribution function method.Considering order statistics,the key focus of this article is to propose new quantile-based Mathai-Haubold entropy and investigate its characteristics.The divergence measure of theMathai-Haubold is also considered and some of its properties are established.Further,based on order statistics,we propose the residual entropy of the quantile-based Mathai-Haubold and some of its property results are proved.The performance of the proposed quantile-based Mathai-Haubold entropy is investigated by simulation studies.Finally,a real data application is used to compare our proposed quantile-based entropy to the existing quantile entropies.The results reveal the outperformance of our proposed entropy to the other entropies.展开更多
The prediction accuracy and generalization of fermentation process modeling on exopolysaccharide (EPS) production from Lactobacillus are often deteriorated by noise existing in the corresponding experimental data. In ...The prediction accuracy and generalization of fermentation process modeling on exopolysaccharide (EPS) production from Lactobacillus are often deteriorated by noise existing in the corresponding experimental data. In order to circumvent this problem, a novel entropy-based criterion is proposed as the objective function of several commonly used modeling methods, i.e. Multi-Layer Perceptron (MLP) network, Radial Basis Function (RBF) neural network, Takagi-Sugeno-Kang (TSK) fuzzy system, for fermentation process model in this study. Quite different from the traditional Mean Square Error (MSE) based criterion, the novel entropy-based criterion can be used to train the parameters of the adopted modeling methods from the whole distribution structure of the training data set, which results in the fact that the adopted modeling methods can have global approximation capability. Compared with the MSE- criterion, the advantage of this novel criterion exists in that the parameter learning can effectively avoid the over-fitting phenomenon, therefore the proposed criterion based modeling methods have much better generalization ability and robustness. Our experimental results confirm the above virtues of the proposed entropy-criterion based modeling methods.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.71603146).
文摘Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.
文摘It is well known that thermodynamics raises conceptual difficulties. Far to be limited to students having to learn the subject, this impression is sometimes mentioned by specialists themselves who confess not being totally sure of the consistency of the thermodynamic theory, despite the fact that its practical usefulness is indisputable. The present paper deals with this interesting question and leads to the idea that there is an imperfect convergence between the way of using the thermodynamic tool and the way of understanding its significance. Illustrated by a very simple example, the discussion can be followed by every scientist having the fundamental basis in thermodynamics. The suggested hypothesis is that the Einstein mass-energy relation is closely associated to the concept of entropy, opening a link between thermodynamics and relativity.
文摘It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.
文摘Although there are many measures of variability for qualitative variables, they are little used in social research, nor are they included in statistical software. The aim of this article is to present six measures of variation for qualitative variables of simple calculation, as well as to facilitate their use by means of the R software. The measures considered are, on the one hand, Freemans variation ratio, Morals universal variation ratio, Kvalseths standard deviation from the mode, and Wilcoxs variation ratio which are most affected by proximity to a constant random variable, where the measures of variability for qualitative variables reach their minimum value of 0. On the other hand, the Gibbs-Poston index of qualitative variation and Shannons relative entropy are included, which are more affected by the proximity to a uniform distribution, where the measures of variability for qualitative variables reach their maximum value of 1. Point and interval estimation are addressed. Bootstrap by the percentile and bias-corrected and accelerated percentile methods are used to obtain confidence intervals. Two calculation situations are presented: with a sample mode and with two or more modes. The standard deviation from the mode among the six considered measures, and the universal variation ratio among the three variation ratios, are particularly recommended for use.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
文摘The first part of this paper is a condensed synthesis of the matter presented in several previous ones. It begins with an argumentation showing that the first and second laws of thermodynamics are incompatible with one another if they are not connected to relativity. The solution proposed consists of inserting the Einstein mass-energy relation into a general equation that associates both laws. The second part deals with some consequences of this new insight and its possible link with gravitation. Despite a slight modification of the usual reasoning, the suggested hypothesis leads to a simplification and extension of the thermodynamic theory and to the idea that relativity is omnipresent around us.
文摘The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.
基金This work is supported by Natural Science Foundation of Hebei Province,China(Project No.G2020403008)Humanities and Social Science Research Project of Hebei Education Department,China(Project No.SD2021044)the Fundamental Research Funds for the Universities in Hebei Province,China(Project No.QN202210).
文摘Sustainability evaluation of regional microgrid interconnection system is conducive to a profound and comprehensive understanding of the impact of interconnection system projects.In order to realize the comprehensive and scientific intelligent evaluation of the system,this paper proposes an evaluation model based on combination entropy weight rank order-technique for order preference by similarity to an ideal solution(TOPSIS)and Niche Immune Lion Algorithm-Extreme Learning Machine with Kernel(NILAKELM).Firstly,the sustainability evaluation indicator system of the regional microgrid interconnection system is constructed fromfour aspects of economic,environmental,social,and technical characteristics,and the evaluation indicators are explained.Then,the classical evaluationmodel based on TOPSIS is constructed,and the entropy weight method and rank order method(RO)are coupled to obtain the indicator weight.The niche immune algorithm is used to improve the lion algorithm,and the improved lion algorithm is used to optimize the parameters of KELM,and the intelligent evaluation model based on NILA-KELM is obtained to realize fast real-time calculation.Finally,the scientificity and accuracy of themodel proposed in this paper are verified.The model proposed in this paper has the lowest RMSE,MAE and RE values,indicating that its intelligent evaluation results are the most accurate.This study is conducive to the horizontal comparison of the overall performance of regional microgrid interconnection system projects,helps investors to choose the most promising project scheme,and helps the government to find feasible project.
基金supported by the National Natural Science Foundation of China (No. 51178141)National Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07408-002-004-002)
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia has funded this project under Grant No.(G-102-130-1443).
文摘In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.
文摘Since the advent of relativity, it is widely accepted that the law of conservation of energy must include the energy created by disintegration of matter, or converted into matter. The aim of the present paper deals with the insertion of this concept into the basic equations of thermodynamics.
文摘In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and further proposed a method to determine the QCD gas effective mass based on a pseudo-first order β decay reaction kinetics. In a second paper, we proposed a method to determine if the QCD gas density on black hole ergospheres grows in time and hence their ergoregions act as matter reactors that break matter and antimatter symmetry by trapping antimatter particles. In this paper, we suggest that quark and antiquark pair exchange reactions between particles and the QCD gas may accelerate or decelerate particles and that the quarks and antiquarks numbers are strictly conserved in these pair exchange reactions. We further suggest that antimatter plays a principal role in the universe and is inseparable from both matter, via Dirac’ spinors, and space, via the quarks and antiquarks pair exchange reactions with the QCD gas;however with a singular exception, black hole ergospheres separate and black hole ergoregions trap antimatter particles.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
文摘This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap between general relativity and quantum mechanics, offering a unified framework that incorporates the geometric properties of spacetime with fundamental aspects of quantum information theory. The theoretical implications of this approach include potential resolutions to longstanding issues like the black hole information paradox and new perspectives on dark energy. The paper presents modified versions of classical solutions such as the Schwarzschild metric and Friedmann equations, incorporating quantum corrections. It also outlines testable predictions in areas including gravitational wave propagation, black hole shadows, and cosmological observables. We propose several avenues for future research, including exploring connections with other quantum gravity approaches designing experiments to test the theory’s predictions. This work contributes to the ongoing exploration of quantum gravity, offering a framework that potentially unifies general relativity and quantum mechanics with testable predictions.
文摘Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.
文摘In this communication, we consider and study a generalized two parameters entropy of order statistics and derive bounds for it. The generalized residual entropy using order statistics has also been discussed.
基金Authors thank and appreciate funding this work by the Deanship of Scientific Research at King Khalid University through the Research Groups Program under the Grant No.(R.G.P.2/82/42).
文摘Many researchers measure the uncertainty of a random variable using quantile-based entropy techniques.These techniques are useful in engineering applications and have some exceptional characteristics than their distribution function method.Considering order statistics,the key focus of this article is to propose new quantile-based Mathai-Haubold entropy and investigate its characteristics.The divergence measure of theMathai-Haubold is also considered and some of its properties are established.Further,based on order statistics,we propose the residual entropy of the quantile-based Mathai-Haubold and some of its property results are proved.The performance of the proposed quantile-based Mathai-Haubold entropy is investigated by simulation studies.Finally,a real data application is used to compare our proposed quantile-based entropy to the existing quantile entropies.The results reveal the outperformance of our proposed entropy to the other entropies.
文摘The prediction accuracy and generalization of fermentation process modeling on exopolysaccharide (EPS) production from Lactobacillus are often deteriorated by noise existing in the corresponding experimental data. In order to circumvent this problem, a novel entropy-based criterion is proposed as the objective function of several commonly used modeling methods, i.e. Multi-Layer Perceptron (MLP) network, Radial Basis Function (RBF) neural network, Takagi-Sugeno-Kang (TSK) fuzzy system, for fermentation process model in this study. Quite different from the traditional Mean Square Error (MSE) based criterion, the novel entropy-based criterion can be used to train the parameters of the adopted modeling methods from the whole distribution structure of the training data set, which results in the fact that the adopted modeling methods can have global approximation capability. Compared with the MSE- criterion, the advantage of this novel criterion exists in that the parameter learning can effectively avoid the over-fitting phenomenon, therefore the proposed criterion based modeling methods have much better generalization ability and robustness. Our experimental results confirm the above virtues of the proposed entropy-criterion based modeling methods.