期刊文献+
共找到302,372篇文章
< 1 2 250 >
每页显示 20 50 100
Inspires effective alternatives to backpropagation:predictive coding helps understand and build learning
1
作者 Zhenghua Xu Miao Yu Yuhang Song 《Neural Regeneration Research》 SCIE CAS 2025年第11期3215-3216,共2页
Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the pr... Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the prediction errors,referred to as credit assignment(Lillicrap et al.,2020).It is critical to develop artificial intelligence by understanding how the brain deals with credit assignment in neuroscience. 展开更多
关键词 ASSIGNMENT learning enable
下载PDF
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:3
2
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics Corrosion property HIGH-THROUGHPUT Density functional theory Machine learning
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
3
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
4
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
下载PDF
The coordinated evolution of ecological environment,public service,and tourism economy along the Silk Road Economic Belt,using the Dual-Carbon Targets 被引量:1
5
作者 Shuo Yang Wei Guo +1 位作者 Tianjun Xu Tongtong Liu 《Chinese Journal of Population,Resources and Environment》 2024年第1期34-47,共14页
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en... Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue. 展开更多
关键词 Dual-carbon Ecological environment Public services tourist economy Silk road Economic Belt
下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
6
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Toward understanding the role of genomic repeat elements in neurodegenerative diseases
7
作者 Zhengyu An Aidi Jiang Jingqi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期646-659,共14页
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se... Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements. 展开更多
关键词 Alzheimer's disease ATAXIA deep learning long-read sequencing NEURODEGENERATION neurodegenerative diseases Parkinson's disease repeat element structural variant
下载PDF
Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow 被引量:1
8
作者 Kang Wang Jie Zhang +2 位作者 Ji Zhang Zhangyu Wang Huiyu Zhu 《Earthquake Research Advances》 CSCD 2024年第1期59-66,共8页
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout... Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well. 展开更多
关键词 Earthquake monitoring Machine learning Local seismicity Gaussian waveform Sparse stations
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
9
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
10
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
下载PDF
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations 被引量:1
11
作者 Jifeng QI Guimin SUN +2 位作者 Bowen XIE Delei LI Baoshu YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期377-389,共13页
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS... Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques. 展开更多
关键词 machine learning convolutional neural network(CNN) ocean subsurface salinity structure(OSSS) Indian Ocean satellite observations
下载PDF
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
12
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
下载PDF
A Tutorial on Federated Learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
13
作者 M.Victoria Luzón Nuria Rodríguez-Barroso +5 位作者 Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期824-850,共27页
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ... When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications. 展开更多
关键词 Data privacy distributed machine learning federated learning software frameworks
下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
14
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 Association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
下载PDF
The Extreme Machine Learning Actuarial Intelligent Agricultural Insurance Based Automated Underwriting Model
15
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期598-633,共36页
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di... The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making. 展开更多
关键词 Extreme Machine learning Actuarial Underwriting Machine learning Intelligent Model Agricultural Insurance
下载PDF
Exploring the Factors Associated with 12-Month Non-Return to Work among Motorcyclists Involved in Road Accidents
16
作者 Yolaine Glèlè-Ahanhanzo Donatien Daddah +2 位作者 Alphonse Kpozehouen Bella Hounkpè Dos Santos Moussiliou N. Paraiso 《Open Journal of Preventive Medicine》 2024年第1期1-16,共16页
Introduction: Motorcyclists bear a disproportionate burden of morbidity and mortality from road accidents. In addition, the consequences of these accidents affect the ability of victims to return to work. This study a... Introduction: Motorcyclists bear a disproportionate burden of morbidity and mortality from road accidents. In addition, the consequences of these accidents affect the ability of victims to return to work. This study aimed to determine the prevalence and factors associated with non-return to work among surviving motorcyclists involved in road accidents 12 months after the event. Materials and Methods: It was a cross-sectional study conducted using data from a cohort of motorcyclists involved in accidents and recruited in five hospitals in Benin from July 2019 to January 2020. The dependent variable was non-return to work 12 months after the accident (yes vs no). The independent variables were categorized into two groups: baseline and 12-month follow-up variables. Logistic regression was used to determine the factors associated with non-return to work at 12 months among the participants. Results: Among the 362 participants, 55 (15.19%, 95% CI = 11.84 - 19.29) had not returned to work 12 months after the accident. Risk factors for non-return to work identified were: smoking (aOR = 4.41, 95% CI = 1.44 - 13.56, p = 0.010), hospitalization (aOR = 2.87, 95% CI = 1.14 - 7.24, p Conclusion: The prevalence of non-return to work at 12 months was high among surviving motorcyclists involved in road accidents in Benin. Integrated support for patients based on identified risk factors should effectively improve their return to work. 展开更多
关键词 road Accident Return to Work MOtoRCYCLISTS HOSPITAL Mental Health COHORT BENIN
下载PDF
The First Overseas Cooperation Station of Silk Road People-to-People Connectivity Unveiled in Budapest,Hungary
17
《International Understanding》 2024年第2期44-45,共2页
On May 2nd,the Thematic Forum on China-Hungary Belt and Road Pragmatic Cooperation was held in Budapest,the capital of Hungary,during which,the China-Hungary Cooperation Station of Silk Road People-to-People Connectiv... On May 2nd,the Thematic Forum on China-Hungary Belt and Road Pragmatic Cooperation was held in Budapest,the capital of Hungary,during which,the China-Hungary Cooperation Station of Silk Road People-to-People Connectivity was officially launched.This is the first overseas station under the Action on Silk Road People-to-People Connectivity.It will surely provide important support to the achievement of more fruitful results in people-to-people exchanges and cooperation between the two countries. 展开更多
关键词 CONNECTIVITY road Budapest
下载PDF
"Silk Road People-to-People Connectivity"Care for the Future Donation Ceremony Held in Nay Pyi Taw,Myanmar
18
《International Understanding》 2024年第2期46-47,共2页
On April 1Oth,“Silk Road People-to-People Connectivity”Care for the Future Activity and a donation ceremony of school sports goods were held at China-Myanmar Friendship School,Basic Education High School(BEHS)No.14,... On April 1Oth,“Silk Road People-to-People Connectivity”Care for the Future Activity and a donation ceremony of school sports goods were held at China-Myanmar Friendship School,Basic Education High School(BEHS)No.14,in Nay Pyi Taw,Myanmar. 展开更多
关键词 road Basic CONNECTIVITY
下载PDF
A Review of Deep Learning-Based Vulnerability Detection Tools for Ethernet Smart Contracts
19
作者 Huaiguang Wu Yibo Peng +1 位作者 Yaqiong He Jinlin Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期77-108,共32页
In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerabi... In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection. 展开更多
关键词 Smart contract vulnerability detection deep learning
下载PDF
The prediction of donor number and acceptor number of electrolyte solvent molecules based on machine learning
20
作者 Huaping Hu Yuqing Shan +3 位作者 Qiming Zhao Jinglun Wang Lingjun Wu Wanqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期374-382,共9页
Electrolyte solvents have a critical impact on the design of high performance and safe batteries.Gutmann's donor number(DN) and acceptor number(AN) values are two important parameters to screen and design superior... Electrolyte solvents have a critical impact on the design of high performance and safe batteries.Gutmann's donor number(DN) and acceptor number(AN) values are two important parameters to screen and design superior electrolyte solvents. However, it is more time-consuming and expensive to obtain DN and AN values through experimental measurements. Therefore, it is essential to develop a method to predict DN and AN values. This paper presented the prediction models for DN and AN based on molecular structure descriptors of solvents, using four machine learning algorithms such as Cat Boost(Categorical Boosting), GBRT(Gradient Boosting Regression Tree), RF(Random Forest) and RR(Ridge Regression).The results showed that the DN and AN prediction models based on Cat Boost algorithm possesses satisfactory prediction ability, with R^(2) values of the testing set are 0.860 and 0.96. Moreover, the study analyzed the molecular structure parameters that impact DN and AN. The results indicated that TDB02m(3D Topological distance based descriptors-lag 2 weighted by mass) had a significant effect on DN, while HATS1s(leverage-weighted autocorrelation of lag 1/weighted by I-state) plays an important role in AN. The work provided an efficient approach for accurately predicting DN and AN values, which is useful for screening and designing electrolyte solvents. 展开更多
关键词 Machine learning Donor number Acceptor number Electrolyte solvents
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部