Three tectonic units have been recognized in the Chifeng area, Inner Mongolia, from north to south, including the Qiganmiao accretionary prism, Jiefangyingzi arc belt and Sidaozhangpeng molasse basin, which formed an ...Three tectonic units have been recognized in the Chifeng area, Inner Mongolia, from north to south, including the Qiganmiao accretionary prism, Jiefangyingzi arc belt and Sidaozhangpeng molasse basin, which formed an Andeantype active continent margin during the early to middle Paleozoic. The Qiganmiao accretionary prism is characterized by a mélange that consists of gabbro, two-mica quartz schist and basic volcanic rock blocks and heterogeneously deformed marble matrix. Two zircon U-Pb ages of 446.0±6.3 Ma and 1104±27 Ma have been acquired and been interpreted as the metamorphic and forming ages for the gabbro and two-mica quartz schist, respectively. The prism formed during the early to middle Paleozoic southward subduction of the Paleo Asian Ocean(PAO) and represents a suture between the North China craton(NCC) and Central Asian Orogenic Belt(CAOB). The Jiefangyingzi arc belt consists of pluton complex and volcanic rocks of the Xibiehe and Badangshan Formations, and Geochronology analysis indicates that the development of it can be divided into two stages. The first stage is represented by the Xibiehe Formation volcanic rocks, which belong to the subalkaline series, enriched LREE and LILE and depleted HFSE, with negative Eu anomalies, and plot in the volcanic arc field in discrimination diagrams. These characters indicate that the Xibiehe Formation results from to the continental arc magmatic activity related to the subduction of the PAO during 400–420 Ma. Magmatism of the second stage in 380–390 Ma consists of the Badangshan Formation volcanic rocks. Geochemistry analysis reveals that rhyolite, basaltic andesite and basalt of the Badangshan Formation were developed in continental margin arc setting. Moreover, the basaltic andesite and basalt display positive Sr anomalies, and the basalt have very low Nb/La values, suggesting that fluid is involved in magma evolution and the basalts were contaminated by continental crust. The sequence of Sidaozhangpeng molasse basin is characterized by proximity, coarseness and large thickness, similar to the proximity molasses basin. According to our field investigation, geochronological and geochemical data, combined with previous research in this area, a tectonic evolutionary model for Andes-type active continental margin of the CAOB has been proposed, including a development of the subduction-free PAO before 446 Ma, a subduction of the PAO and arc-related magmatism during 446–380 Ma, and formation of a molasse basin during 380–360 Ma.展开更多
Continental reconstructions in Central Asia are represented by orogenesis along some large orogenic belts in the Altaid collage (Fig. 1 ) or Central Asian Orogenic Belt (CAOB), which separate the East European and...Continental reconstructions in Central Asia are represented by orogenesis along some large orogenic belts in the Altaid collage (Fig. 1 ) or Central Asian Orogenic Belt (CAOB), which separate the East European and Siberian cratons to the north from the Tarim and North China cratons to the south ($eng0r et al,, 1993; Jahn et al., 2004; Windley et al., 2007; Qu et al., 2008; Xiao et al., 2010; Xiao and Santosh, 2014). The Altaid Collage was characterized by complex long tectonic and structural evolution from at least ca. 1.0 Ga to late Paleozoic-early Mesozoic with considerable continental growth (Khain et al., 2002; Jahn et al., 2004; Xiao et al., 2009, 2014; KrOner et al., 2014), followed by Cenozoic intracontinental evolution related to far-field effect of the collision of the In- dian Plate to the Eurasian Accompanying with these complex world-class ore deposits developed 2001; Goldfarb et al., 2003, 2014). Plate (Cunningham, 2005). geodynamic evolutions, many (Qin, 2000; Yakubchuk et al,2001; Goldfarb et al., 2003, 2014).展开更多
After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. F...After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.展开更多
The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralog...The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials展开更多
In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China...In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.展开更多
The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this be...The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia.展开更多
The Meso-Cenozoic tectonic attribute of southern China is a continental tridirectional orogenic belt formed by subsynchronous interaction among the Tethys, Northwest Pacific and Kunlun-Qinling tectonic domains. It was...The Meso-Cenozoic tectonic attribute of southern China is a continental tridirectional orogenic belt formed by subsynchronous interaction among the Tethys, Northwest Pacific and Kunlun-Qinling tectonic domains. It was created by superimposition of repeated orogenies since the Late Permian. The Indosinian folds therein are gentle and localized.展开更多
The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic gran...The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic granitic rocks,especially of Carboniferous age,were intruded in this area.However,these granitoids have not been well studied and there is a lack of precise ages and isotopic data.This has hampered our understanding of the tectonic evolution of southeastern Mongolia,and even the entire CAOB.In this paper,we provide new U-Pb isotopic ages and geochemical analyses for these Carboniferous granites.One granite from the Ulaanbadrakh pluton yielded a zircon U-Pb age of 326 Ma,which indicates emplacement in the Early Carboniferous,and three other granites from the Khatanbulag region gave zircon U-Pb ages of 316 Ma,315 Ma,and 311 Ma,which indicate emplacement in the Late Carboniferous.The Early Carboniferous granite has SiO2 contents of 70.04–70.39 wt%and K_(2)O+Na_(2)O contents of 6.48–6.63 wt%,whereas the Late Carboniferous granites have more variable compositions(SiO2=65.29–77.91 wt%and K2O+Na2O=5.30–7.27 wt%).All the granites are weakly-peraluminous I-types that are relatively enriched in U,Th,K,Zr,Hf,and LREEs.The whole rock Sr-Nd and zircon in situ Lu-Hf isotope analyses for the Early Carboniferous granite gave positive values ofεNd(t)(2.87)andεHf(t)(4.31–12.37)with young Nd(TDM=860 Ma)and Hf(TDMc=1367–637 Ma)two-stage model ages,indicating derivation from juvenile crustal material.In contrast,the Late Carboniferous granites had more diverse values ofεNd(t)(–4.03 to 2.18)andεHf(t)(–12.69 to 5.04)with old Nd(TDM=1358–1225 Ma)and Hf(TDMc=2881–1294 Ma)depleted mantle two-stage model ages,suggesting derivation from remelting of Precambrian basement.Based on the existing results,the tectonic setting of the Late Carboniferous granites in the central part of South Mongolia is known for its diversity,and this paper believes that the tectonic background of the carboniferous granite records the tectonic transition from a continental-margin-arc to a postcollisional extensional setting during the Late Carboniferous–Permian.展开更多
Taihangshan orogen, called as tectonomagmatic belt, is thought to be a part of Mesozoic circum Pacific magmatic arc. On the basis of the studying of intrusive rocks of Taihang Mountains in Yanshanian, we compare the...Taihangshan orogen, called as tectonomagmatic belt, is thought to be a part of Mesozoic circum Pacific magmatic arc. On the basis of the studying of intrusive rocks of Taihang Mountains in Yanshanian, we compare the petrochemical and geochemical characteristics and their generation information from intrusives of different periods and regions in details. We suggest the idea of “Taihangshan style orogen” and its generation model. It is suggested that Taihangshan orogen is a new orogenic type, which is controlled by the long distance effect of the subduction between the plate boundaries of Europe Asian and Pacific Ocean, marked by extensive magmatic activity, and characterized by the two way thickening of the crust along the depth dimension.展开更多
It has been suggested that eclogites in the Dabie orogenic be lt are exhumation products, which had subducted into the deep-seated mantle and undergone ultra-high pressure metamorphism during the Triassic. But no dire...It has been suggested that eclogites in the Dabie orogenic be lt are exhumation products, which had subducted into the deep-seated mantle and undergone ultra-high pressure metamorphism during the Triassic. But no direct evidence supports this process except the calculated p-T conditions from mineral thermobarometers. The Late Cretaceous basalts studied in the prese nt paper, however, have provided some geochemical evidence for crust-mantle int eraction in the area. These basalts are distributed in Mesozoic faulted basins i n central and southern Dabie orogenic belt. Since little obvious contamination f rom continental crust and differentiation-crystallization were observed, it is suggested, based on a study of trace elements, that the basalts are alkaline and resultant from batch partial melting of the regional mantle rocks, and share th e same or similar geochemical features with respect to their magma source. In th e spider diagram normalized by the primitive mantle, trace element geochemistry data show that their mantle sources are enriched in certain elements concentrate d in the continental crust, such as Pb, K, Rb and Ba, and slightly depleted in s ome HFSE such as Hf, P and Nb. Pb-Sr-Nd isotopic compositions further suggest the mantle is the mixture of depleted mantle and enriched one . T his interaction can explain the trace element characteristics of basaltic magmas , i.e., the enrichment of Pb and the depletion of Hf, P and Nb in basalts can be interpreted by the blending of the eclogites in DOB (enriched in Pb and deplete d in Hf, P and Nd) with the East China depleted mantle (As compared to the primi tive mantle, it is neither enriched in Pb nor depleted in Hf, P and Nb). It is a lso indicated that the eclogites in the Dabie orogenic belt were surely derived from the exhumation materials, which had delaminated into the deep-seated mantl e. Moreover, the process subsequently resulted in compositional variation of the mantle (especially in trace elements and isotopes), as revealed by the late man tle-derived basalts in the Dabie orogenic belt.展开更多
The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, in- cluding the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zon...The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, in- cluding the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows:The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sin- istrally and obliquely to North China Block during the collision of North China Block and South China Block.展开更多
Geological, geophysical and geochemical evidence for lower crustal delamination in the Qinling-Dabie oro-genic belt is presented and a chemical geodynamic model for lower crustal delamination is developed. The synthet...Geological, geophysical and geochemical evidence for lower crustal delamination in the Qinling-Dabie oro-genic belt is presented and a chemical geodynamic model for lower crustal delamination is developed. The synthetic results suggest that eclogite from the Dabie-Sulu ultrahigh pressure metamorphic belt is the most likely candidate as the de-laminated material, and that a cumulative 37-82 km thick eclogitic lower crust is required to have been delaminated in order to explain the relative deficits in Eu, Sr, Cr, Ni, Co, V and Ti in the present total crust composition of the Qin-ling-Dabie orogenic belt. Delamination of the lower crust can well interpret many geological, geophysical and geochemical characteristics of the belt.展开更多
40Ar/39Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis an...40Ar/39Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock 40Ar/39Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit SiO2 of 56.86-66.86 wt.%,K2 O of 0.99-2.46 wt.%and MgO of 1.03-4.47 wt.%,with Mg#of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial 87Sr/86Sr ratios ranging from 0.7112 to 0.7149 andεNd(t)values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.展开更多
Manganoan skarns consist of special Mn (Ca, Mg, Fe, Al) silicate metasomatic minerals and are usually associated with Pb-Zn(Ag) mineralization. They occur chiefly along the lithologic contacts or faults and fractures ...Manganoan skarns consist of special Mn (Ca, Mg, Fe, Al) silicate metasomatic minerals and are usually associated with Pb-Zn(Ag) mineralization. They occur chiefly along the lithologic contacts or faults and fractures of carbonate wall rocks distal from the intrusive contact zone, and are combined with Fe, Cu, W, Sn and Cu-bearing calcic or magnesian skarns occurring in the contact zones to constitute certain metasomatic zoning. Manganoan skarns are formed later than calcic or magnesian skarns. Their rock-forming temperatures are lower than those of calcic or magnesian skarns. The mineral assemblages of manganoan skarns occurring in different carbonate rocks (limestone or dolomite) are notably different.展开更多
基金supported by grants from National Key R&D Program of China (2017YFC0601302)the NSF of China (41672214)Geological Survey Project of China Geological Survey (DD20189612, DD20190004).
文摘Three tectonic units have been recognized in the Chifeng area, Inner Mongolia, from north to south, including the Qiganmiao accretionary prism, Jiefangyingzi arc belt and Sidaozhangpeng molasse basin, which formed an Andeantype active continent margin during the early to middle Paleozoic. The Qiganmiao accretionary prism is characterized by a mélange that consists of gabbro, two-mica quartz schist and basic volcanic rock blocks and heterogeneously deformed marble matrix. Two zircon U-Pb ages of 446.0±6.3 Ma and 1104±27 Ma have been acquired and been interpreted as the metamorphic and forming ages for the gabbro and two-mica quartz schist, respectively. The prism formed during the early to middle Paleozoic southward subduction of the Paleo Asian Ocean(PAO) and represents a suture between the North China craton(NCC) and Central Asian Orogenic Belt(CAOB). The Jiefangyingzi arc belt consists of pluton complex and volcanic rocks of the Xibiehe and Badangshan Formations, and Geochronology analysis indicates that the development of it can be divided into two stages. The first stage is represented by the Xibiehe Formation volcanic rocks, which belong to the subalkaline series, enriched LREE and LILE and depleted HFSE, with negative Eu anomalies, and plot in the volcanic arc field in discrimination diagrams. These characters indicate that the Xibiehe Formation results from to the continental arc magmatic activity related to the subduction of the PAO during 400–420 Ma. Magmatism of the second stage in 380–390 Ma consists of the Badangshan Formation volcanic rocks. Geochemistry analysis reveals that rhyolite, basaltic andesite and basalt of the Badangshan Formation were developed in continental margin arc setting. Moreover, the basaltic andesite and basalt display positive Sr anomalies, and the basalt have very low Nb/La values, suggesting that fluid is involved in magma evolution and the basalts were contaminated by continental crust. The sequence of Sidaozhangpeng molasse basin is characterized by proximity, coarseness and large thickness, similar to the proximity molasses basin. According to our field investigation, geochronological and geochemical data, combined with previous research in this area, a tectonic evolutionary model for Andes-type active continental margin of the CAOB has been proposed, including a development of the subduction-free PAO before 446 Ma, a subduction of the PAO and arc-related magmatism during 446–380 Ma, and formation of a molasse basin during 380–360 Ma.
基金financially supported by the Natural National Science Foundation of China(Grant Nos.41230207,41202150, 41472192,41390441 and 41190075)
文摘Continental reconstructions in Central Asia are represented by orogenesis along some large orogenic belts in the Altaid collage (Fig. 1 ) or Central Asian Orogenic Belt (CAOB), which separate the East European and Siberian cratons to the north from the Tarim and North China cratons to the south ($eng0r et al,, 1993; Jahn et al., 2004; Windley et al., 2007; Qu et al., 2008; Xiao et al., 2010; Xiao and Santosh, 2014). The Altaid Collage was characterized by complex long tectonic and structural evolution from at least ca. 1.0 Ga to late Paleozoic-early Mesozoic with considerable continental growth (Khain et al., 2002; Jahn et al., 2004; Xiao et al., 2009, 2014; KrOner et al., 2014), followed by Cenozoic intracontinental evolution related to far-field effect of the collision of the In- dian Plate to the Eurasian Accompanying with these complex world-class ore deposits developed 2001; Goldfarb et al., 2003, 2014). Plate (Cunningham, 2005). geodynamic evolutions, many (Qin, 2000; Yakubchuk et al,2001; Goldfarb et al., 2003, 2014).
文摘After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.
基金This rescarch was jointly supported by the NationalNatural Science Foundation of China Grant No.4917-2094National Key Project No.305with additionalsuppor for the analyses from the Modern AnalysisCentre of Nanjing University.
文摘The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials
基金supported by China Geological Survey(CGS) and IGMA 5000 (Grant No. 12120111200131)the ministry of Science and Technology (MST) (Grant No.,2011FY120100)
文摘In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.
基金financially supported by the National Natural Science Foundation of China(42130305 and 42002227)project of the China Geological Survey(DD20190039-04,DD20179402,DD20190360 and DD20221632)+2 种基金National Key R&D Program of China(2017YFC0601300 and 2013CB429802)Taishan Scholars(ts20190918)Qingdao Leading Innovation Talents(19-3-2-19-zhc).
文摘The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia.
基金This study was financially supported by the Natural Science Foundation of the Guangxi Zhuang Autonomous Region(GSN 9517009).
文摘The Meso-Cenozoic tectonic attribute of southern China is a continental tridirectional orogenic belt formed by subsynchronous interaction among the Tethys, Northwest Pacific and Kunlun-Qinling tectonic domains. It was created by superimposition of repeated orogenies since the Late Permian. The Indosinian folds therein are gentle and localized.
基金supported financially by the National Key Research and Development Program of China(Grant Nos 2018YFC0603702 and 2017YFC0601301)NSFC projects(Grant Nos 41372077 and U1403291)+1 种基金projects of the China Geological Survey(Grant Nos DD20190685,DD20160024,DD20160123,and DD20160345)This publication is a contribution to IGCP Project 662。
文摘The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic granitic rocks,especially of Carboniferous age,were intruded in this area.However,these granitoids have not been well studied and there is a lack of precise ages and isotopic data.This has hampered our understanding of the tectonic evolution of southeastern Mongolia,and even the entire CAOB.In this paper,we provide new U-Pb isotopic ages and geochemical analyses for these Carboniferous granites.One granite from the Ulaanbadrakh pluton yielded a zircon U-Pb age of 326 Ma,which indicates emplacement in the Early Carboniferous,and three other granites from the Khatanbulag region gave zircon U-Pb ages of 316 Ma,315 Ma,and 311 Ma,which indicate emplacement in the Late Carboniferous.The Early Carboniferous granite has SiO2 contents of 70.04–70.39 wt%and K_(2)O+Na_(2)O contents of 6.48–6.63 wt%,whereas the Late Carboniferous granites have more variable compositions(SiO2=65.29–77.91 wt%and K2O+Na2O=5.30–7.27 wt%).All the granites are weakly-peraluminous I-types that are relatively enriched in U,Th,K,Zr,Hf,and LREEs.The whole rock Sr-Nd and zircon in situ Lu-Hf isotope analyses for the Early Carboniferous granite gave positive values ofεNd(t)(2.87)andεHf(t)(4.31–12.37)with young Nd(TDM=860 Ma)and Hf(TDMc=1367–637 Ma)two-stage model ages,indicating derivation from juvenile crustal material.In contrast,the Late Carboniferous granites had more diverse values ofεNd(t)(–4.03 to 2.18)andεHf(t)(–12.69 to 5.04)with old Nd(TDM=1358–1225 Ma)and Hf(TDMc=2881–1294 Ma)depleted mantle two-stage model ages,suggesting derivation from remelting of Precambrian basement.Based on the existing results,the tectonic setting of the Late Carboniferous granites in the central part of South Mongolia is known for its diversity,and this paper believes that the tectonic background of the carboniferous granite records the tectonic transition from a continental-margin-arc to a postcollisional extensional setting during the Late Carboniferous–Permian.
文摘Taihangshan orogen, called as tectonomagmatic belt, is thought to be a part of Mesozoic circum Pacific magmatic arc. On the basis of the studying of intrusive rocks of Taihang Mountains in Yanshanian, we compare the petrochemical and geochemical characteristics and their generation information from intrusives of different periods and regions in details. We suggest the idea of “Taihangshan style orogen” and its generation model. It is suggested that Taihangshan orogen is a new orogenic type, which is controlled by the long distance effect of the subduction between the plate boundaries of Europe Asian and Pacific Ocean, marked by extensive magmatic activity, and characterized by the two way thickening of the crust along the depth dimension.
文摘It has been suggested that eclogites in the Dabie orogenic be lt are exhumation products, which had subducted into the deep-seated mantle and undergone ultra-high pressure metamorphism during the Triassic. But no direct evidence supports this process except the calculated p-T conditions from mineral thermobarometers. The Late Cretaceous basalts studied in the prese nt paper, however, have provided some geochemical evidence for crust-mantle int eraction in the area. These basalts are distributed in Mesozoic faulted basins i n central and southern Dabie orogenic belt. Since little obvious contamination f rom continental crust and differentiation-crystallization were observed, it is suggested, based on a study of trace elements, that the basalts are alkaline and resultant from batch partial melting of the regional mantle rocks, and share th e same or similar geochemical features with respect to their magma source. In th e spider diagram normalized by the primitive mantle, trace element geochemistry data show that their mantle sources are enriched in certain elements concentrate d in the continental crust, such as Pb, K, Rb and Ba, and slightly depleted in s ome HFSE such as Hf, P and Nb. Pb-Sr-Nd isotopic compositions further suggest the mantle is the mixture of depleted mantle and enriched one . T his interaction can explain the trace element characteristics of basaltic magmas , i.e., the enrichment of Pb and the depletion of Hf, P and Nb in basalts can be interpreted by the blending of the eclogites in DOB (enriched in Pb and deplete d in Hf, P and Nd) with the East China depleted mantle (As compared to the primi tive mantle, it is neither enriched in Pb nor depleted in Hf, P and Nb). It is a lso indicated that the eclogites in the Dabie orogenic belt were surely derived from the exhumation materials, which had delaminated into the deep-seated mantl e. Moreover, the process subsequently resulted in compositional variation of the mantle (especially in trace elements and isotopes), as revealed by the late man tle-derived basalts in the Dabie orogenic belt.
基金Supported by National Natural Science Foundation of China (Grant Nos.40372097 and 40772131)
文摘The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, in- cluding the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows:The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sin- istrally and obliquely to North China Block during the collision of North China Block and South China Block.
基金Project cosupported by the National Nature Science Foundation of China (Grant Nos. 49625305, 49573183, 49794043, 49672144)the Ministry of Education of China, the Open Laboratory of Constitution.
文摘Geological, geophysical and geochemical evidence for lower crustal delamination in the Qinling-Dabie oro-genic belt is presented and a chemical geodynamic model for lower crustal delamination is developed. The synthetic results suggest that eclogite from the Dabie-Sulu ultrahigh pressure metamorphic belt is the most likely candidate as the de-laminated material, and that a cumulative 37-82 km thick eclogitic lower crust is required to have been delaminated in order to explain the relative deficits in Eu, Sr, Cr, Ni, Co, V and Ti in the present total crust composition of the Qin-ling-Dabie orogenic belt. Delamination of the lower crust can well interpret many geological, geophysical and geochemical characteristics of the belt.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41421002,41302176 and 41872236)National Basic Research Program of China(Grant No.2014CB440901)+1 种基金Foundation of Shaanxi Educational committee(14JK1760)P.A.Cawood acknowledges support from Australian Research Council(GrantFL160100168)
文摘40Ar/39Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock 40Ar/39Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit SiO2 of 56.86-66.86 wt.%,K2 O of 0.99-2.46 wt.%and MgO of 1.03-4.47 wt.%,with Mg#of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial 87Sr/86Sr ratios ranging from 0.7112 to 0.7149 andεNd(t)values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.
基金the National Natural Scicnce Foundation of China grant 40073016.
文摘Manganoan skarns consist of special Mn (Ca, Mg, Fe, Al) silicate metasomatic minerals and are usually associated with Pb-Zn(Ag) mineralization. They occur chiefly along the lithologic contacts or faults and fractures of carbonate wall rocks distal from the intrusive contact zone, and are combined with Fe, Cu, W, Sn and Cu-bearing calcic or magnesian skarns occurring in the contact zones to constitute certain metasomatic zoning. Manganoan skarns are formed later than calcic or magnesian skarns. Their rock-forming temperatures are lower than those of calcic or magnesian skarns. The mineral assemblages of manganoan skarns occurring in different carbonate rocks (limestone or dolomite) are notably different.