As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the tr...As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the traditional test method is not ease fit for the application program in the field of the data mining.In this paper,based on metamorphic testing,a software testing method is proposed in the field of the data mining,makes an association rules algorithm as the specific case,and constructs the metamorphic relation on the algorithm.Experiences show that the method can achieve the testing target and is feasible to apply to other domain.展开更多
Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way ...Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.展开更多
In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First...In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First, two indices including risky duration and risk magnitude are established to characterize the weather conditions. Based on these two indices, the job suitability under the future air state is derived by the fuzzy decision method, and integrated with atraditional heuristic to compute the dispatching priority of each job. Then, a new measure matching degree is constructed to evaluate the effectiveness of the dispatching rule. The greater the matching degree, the smaller the possibility that the quality problems of wood products occur. Finally, simulation experiments show that the dispatching rule can greatly increase the matching degree while maintaining low weighted tardiness.展开更多
Adaptive cluster sampling (ACS) has been a very important tool in estimation of population parameters of rare and clustered population. The fundamental idea behind this sampling plan is to decide on an initial sample ...Adaptive cluster sampling (ACS) has been a very important tool in estimation of population parameters of rare and clustered population. The fundamental idea behind this sampling plan is to decide on an initial sample from a defined population and to keep on sampling within the vicinity of the units that satisfy the condition that at least one characteristic of interest exists in a unit selected in the initial sample. Despite being an important tool for sampling rare and clustered population, adaptive cluster sampling design is unable to control the final sample size when no prior knowledge of the population is available. Thus adaptive cluster sampling with data-driven stopping rule (ACS’) was proposed to control the final sample size when prior knowledge of population structure is not available. This study examined the behavior of the HT, and HH estimator under the ACS design and ACS’ design using artificial population that is designed to have all the characteristics of a rare and clustered population. The efficiencies of the HT and HH estimator were used to determine the most efficient design in estimation of population mean in rare and clustered population. Results of both the simulated data and the real data show that the adaptive cluster sampling with stopping rule is more efficient for estimation of rare and clustered population than ordinary adaptive cluster sampling.展开更多
By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong...By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong inhibition of the same time, support the weak” (抑强扶弱) based on “Yin Yang Wu Xing” Theory in image mathematics of Traditional Chinese Mathematics (TCMath). We defined generalized relations and generalized reasoning, introduced the concept of steady multilateral systems with two non-compatibility relations, and discussed its energy properties. Later based on the intervention principle in image mathematics of TCMath and treated the research object of the image mathematics as a steady multilateral system, it has been proved that the mathematical intervening principle is true. The kernel of this paper is the existence and reasoning of the non-compatibility relations in steady multilateral systems, and it accords with the oriental thinking model.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as...Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as diabetes,Alzheimer’s,renal failure,etc.Identification of a non-enzymatic reaction are quite challenging in research.Manual identification in labs is a very costly and timeconsuming process.In this research,we developed an accurate,valid,and a robust model named as Gly-LysPred to differentiate the glycated sites from non-glycated sites.Comprehensive techniques using position relative features are used for feature extraction.An algorithm named as a random forest with some preprocessing techniques and feature engineering techniques was developed to train a computational model.Various types of testing techniques such as self-consistency testing,jackknife testing,and cross-validation testing are used to evaluate the model.The overall model’s accuracy was accomplished through self-consistency,jackknife,and cross-validation testing 100%,99.92%,and 99.88%with MCC 1.00,0.99,and 0.997 respectively.In this regard,a user-friendly webserver is also urbanized to accumulate the whole procedure.These features vectorization methods suggest that they can play a critical role in other web servers which are developed to classify lysine glycation.展开更多
One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t...One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.展开更多
文摘As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the traditional test method is not ease fit for the application program in the field of the data mining.In this paper,based on metamorphic testing,a software testing method is proposed in the field of the data mining,makes an association rules algorithm as the specific case,and constructs the metamorphic relation on the algorithm.Experiences show that the method can achieve the testing target and is feasible to apply to other domain.
基金Central University Basic Research Fund of China,Grant/Award Number:FWNX04Ningxia Natural Science Foundation,Grant/Award Number:2021AAC03203National Natural Science Foundation of China,Grant/Award Number:61662001。
文摘Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.
基金The National Natural Science Foundation of China(No.61273119)
文摘In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First, two indices including risky duration and risk magnitude are established to characterize the weather conditions. Based on these two indices, the job suitability under the future air state is derived by the fuzzy decision method, and integrated with atraditional heuristic to compute the dispatching priority of each job. Then, a new measure matching degree is constructed to evaluate the effectiveness of the dispatching rule. The greater the matching degree, the smaller the possibility that the quality problems of wood products occur. Finally, simulation experiments show that the dispatching rule can greatly increase the matching degree while maintaining low weighted tardiness.
文摘Adaptive cluster sampling (ACS) has been a very important tool in estimation of population parameters of rare and clustered population. The fundamental idea behind this sampling plan is to decide on an initial sample from a defined population and to keep on sampling within the vicinity of the units that satisfy the condition that at least one characteristic of interest exists in a unit selected in the initial sample. Despite being an important tool for sampling rare and clustered population, adaptive cluster sampling design is unable to control the final sample size when no prior knowledge of the population is available. Thus adaptive cluster sampling with data-driven stopping rule (ACS’) was proposed to control the final sample size when prior knowledge of population structure is not available. This study examined the behavior of the HT, and HH estimator under the ACS design and ACS’ design using artificial population that is designed to have all the characteristics of a rare and clustered population. The efficiencies of the HT and HH estimator were used to determine the most efficient design in estimation of population mean in rare and clustered population. Results of both the simulated data and the real data show that the adaptive cluster sampling with stopping rule is more efficient for estimation of rare and clustered population than ordinary adaptive cluster sampling.
文摘By using mathematical reasoning, this paper demonstrates the mathematical intervening principle: “Virtual disease is to fill his mother but real disease is to rush down his son” (虚则补其母, 实则泄其子) and “Strong inhibition of the same time, support the weak” (抑强扶弱) based on “Yin Yang Wu Xing” Theory in image mathematics of Traditional Chinese Mathematics (TCMath). We defined generalized relations and generalized reasoning, introduced the concept of steady multilateral systems with two non-compatibility relations, and discussed its energy properties. Later based on the intervention principle in image mathematics of TCMath and treated the research object of the image mathematics as a steady multilateral system, it has been proved that the mathematical intervening principle is true. The kernel of this paper is the existence and reasoning of the non-compatibility relations in steady multilateral systems, and it accords with the oriental thinking model.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
基金the Research Management Center,Xiamen University Malaysia under XMUM Research Program Cycle 4(Grant No.XMUMRF/2019-C4/IECE/0012).
文摘Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as diabetes,Alzheimer’s,renal failure,etc.Identification of a non-enzymatic reaction are quite challenging in research.Manual identification in labs is a very costly and timeconsuming process.In this research,we developed an accurate,valid,and a robust model named as Gly-LysPred to differentiate the glycated sites from non-glycated sites.Comprehensive techniques using position relative features are used for feature extraction.An algorithm named as a random forest with some preprocessing techniques and feature engineering techniques was developed to train a computational model.Various types of testing techniques such as self-consistency testing,jackknife testing,and cross-validation testing are used to evaluate the model.The overall model’s accuracy was accomplished through self-consistency,jackknife,and cross-validation testing 100%,99.92%,and 99.88%with MCC 1.00,0.99,and 0.997 respectively.In this regard,a user-friendly webserver is also urbanized to accumulate the whole procedure.These features vectorization methods suggest that they can play a critical role in other web servers which are developed to classify lysine glycation.
基金support from Taif University Researchers supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
文摘One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.