This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained opti...This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.展开更多
This study aims to solve a typical long-term strategic decision problem on supply chain network design with consideration to uncertain demands. Existing methods for these problems are either deterministic or limited i...This study aims to solve a typical long-term strategic decision problem on supply chain network design with consideration to uncertain demands. Existing methods for these problems are either deterministic or limited in scale. We analyze the impact of uncertainty on demand based on actual large data from industrial companies.Deterministic equivalent model with nonanticipativity constraints, branch-and-fix coordination, sample average approximation(SAA) with Bayesian bootstrap, and Latin hypercube sampling were adopted to analyze stochastic demands. A computational study of supply chain network with front-ends in Europe and back-ends in Asia is presented to highlight the importance of stochastic factors in these problems and the efficiency of our proposed solution approach.展开更多
为提高频繁项集挖掘性能,提出了基于渐近取样的频繁项集挖掘近似算法(Frequent Itemsets Mining Approximate Algorithm based on Progressive Sampling,FIMAA-PS),该算法使用渐近取样方法实现数据集的样本提取,基于当前样本输出结果自...为提高频繁项集挖掘性能,提出了基于渐近取样的频繁项集挖掘近似算法(Frequent Itemsets Mining Approximate Algorithm based on Progressive Sampling,FIMAA-PS),该算法使用渐近取样方法实现数据集的样本提取,基于当前样本输出结果自动配置下一轮循环挖掘的样本大小,并使用Rademacher均值对输出结果的频率偏差上限进行理论估计从而得到终止条件,最后通过单次样本快速扫描判断算法终止条件,输出挖掘结果。实验结果表明,不同于传统挖掘精确算法和使用静态取样的挖掘近似算法,FIMAA-PS在输出结果精准度和运行时间方面具有显著优势。展开更多
基金This research is partly supported by the National Natural Science Foundation of China under Grant Nos. 71171027 and 11071028, the Fundamental Research Funds for the Central Universities under Grant No. DUT11SX11, and the Key Project of the National Natural Science Foundation of China under Grant No. 71031002.
文摘This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.
文摘This study aims to solve a typical long-term strategic decision problem on supply chain network design with consideration to uncertain demands. Existing methods for these problems are either deterministic or limited in scale. We analyze the impact of uncertainty on demand based on actual large data from industrial companies.Deterministic equivalent model with nonanticipativity constraints, branch-and-fix coordination, sample average approximation(SAA) with Bayesian bootstrap, and Latin hypercube sampling were adopted to analyze stochastic demands. A computational study of supply chain network with front-ends in Europe and back-ends in Asia is presented to highlight the importance of stochastic factors in these problems and the efficiency of our proposed solution approach.
文摘为提高频繁项集挖掘性能,提出了基于渐近取样的频繁项集挖掘近似算法(Frequent Itemsets Mining Approximate Algorithm based on Progressive Sampling,FIMAA-PS),该算法使用渐近取样方法实现数据集的样本提取,基于当前样本输出结果自动配置下一轮循环挖掘的样本大小,并使用Rademacher均值对输出结果的频率偏差上限进行理论估计从而得到终止条件,最后通过单次样本快速扫描判断算法终止条件,输出挖掘结果。实验结果表明,不同于传统挖掘精确算法和使用静态取样的挖掘近似算法,FIMAA-PS在输出结果精准度和运行时间方面具有显著优势。