Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the...Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.展开更多
The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity proble...The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.展开更多
We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Eu...We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Ou...Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.展开更多
In this paper, we introduce a new class of two-parametric penalized function,which includes the penalized minimum function and the penalized Fischer-Burmeister function over symmetric cone complementarity problems. We...In this paper, we introduce a new class of two-parametric penalized function,which includes the penalized minimum function and the penalized Fischer-Burmeister function over symmetric cone complementarity problems. We propose that this class of function is a class of complementarity functions(C-function). Moreover, its merit function has bounded level set under a weak condition.展开更多
Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive...Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.展开更多
In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinea...In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.展开更多
This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual com...This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual complementarity function associated with second-order cone.We show that the ERM model has bounded level sets under the stochastic weak R0-property.We further derive some error bound results under either the strong monotonicity or some kind of constraint qualifications.Then,we apply the Monte Carlo approximation techniques to solve the ERM model and establish a comprehensive convergence analysis.Furthermore,we report some numerical results on a stochastic second-order cone model for optimal power flow in radial networks.展开更多
In this paper,we consider the second-order cone tensor eigenvalue complementarity problem(SOCTEiCP)and present three different reformulations to the model under consideration.Specifically,for the general SOCTEiCP,we ...In this paper,we consider the second-order cone tensor eigenvalue complementarity problem(SOCTEiCP)and present three different reformulations to the model under consideration.Specifically,for the general SOCTEiCP,we first show its equivalence to a particular variational inequality under reasonable conditions.A notable benefit is that such a reformulation possibly provides an efficient way for the study of properties of the problem.Then,for the symmetric and sub-symmetric SOCTEiCPs,we reformulate them as appropriate nonlinear programming problems,which are extremely beneficial for designing reliable solvers to find solutions of the considered problem.Finally,we report some preliminary numerical results to verify our theoretical results.展开更多
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally conv...In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions.展开更多
Given a real(finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product,we consider the Lorentz cone linear complementarity problem,denoted by LCP(T,Ω,q),where T is a continuous linear operator...Given a real(finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product,we consider the Lorentz cone linear complementarity problem,denoted by LCP(T,Ω,q),where T is a continuous linear operator on H,ΩH is a Lorentz cone,and q ∈ H.We investigate some conditions for which the problem concerned has a unique solution for all q ∈ H(i.e.,T has the GUS-property).Several sufficient conditions and several necessary conditions are given.In particular,we provide two suficient and necessary conditions of T having the GUS-property.Our approach is based on properties of the Jordan product and the technique from functional analysis,which is different from the pioneer works given by Gowda and Sznajder(2007) in the case of finite-dimensional spaces.展开更多
The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′...The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.展开更多
In this paper, we discuss the existence of positive solutions of the secondorder delay boundary value problems. By applying the fixed-point theorem in a cone, we show the existence of at least one positive solution wi...In this paper, we discuss the existence of positive solutions of the secondorder delay boundary value problems. By applying the fixed-point theorem in a cone, we show the existence of at least one positive solution with singularity and the superlinear semipositone. As an demonstrate our results. application, we also give some examples todemonstrate our results.展开更多
Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of...Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.展开更多
The well-known Lyapunov's theorem in matrix theory/continuous dynamical systems as- serts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA^* is posi...The well-known Lyapunov's theorem in matrix theory/continuous dynamical systems as- serts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA^* is positive definite. In this paper, we extend this theorem to the setting of any Euclidean Jordan algebra V. Given any element a E V, we consider the corresponding Lyapunov transformation La and show that the P and S-properties are both equivalent to a being positive. Then we characterize the R0-property for La and show that La has the R0-property if and only if a is invertible. Finally, we provide La with some characterizations of the E0-property and the nondegeneracy property.展开更多
基金Supported by the National Natural Science Foundation of China(No.11101302 and No.11471241)
文摘Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.
基金Supported by the Funds of Ministry of Education of China for PhD (20020141013)the NNSF of China (10471015).
文摘The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.
基金The Specialized Research Fund(20132121110009)for the Doctoral Program of Higher Education
文摘We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.
文摘In this paper, we introduce a new class of two-parametric penalized function,which includes the penalized minimum function and the penalized Fischer-Burmeister function over symmetric cone complementarity problems. We propose that this class of function is a class of complementarity functions(C-function). Moreover, its merit function has bounded level set under a weak condition.
文摘Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.
文摘In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.71831008,11671250,11431004 and 11601458)Humanity and Social Science Foundation of Ministry of Education of China(No.15YJA630034)+2 种基金Shandong Province Natural Science Fund(No.ZR2014AM012)Higher Educational Science and Technology Program of Shandong Province(No.J13LI09)Scientific Research of Young Scholar of Qufu Normal University(No.XKJ201315).
文摘This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual complementarity function associated with second-order cone.We show that the ERM model has bounded level sets under the stochastic weak R0-property.We further derive some error bound results under either the strong monotonicity or some kind of constraint qualifications.Then,we apply the Monte Carlo approximation techniques to solve the ERM model and establish a comprehensive convergence analysis.Furthermore,we report some numerical results on a stochastic second-order cone model for optimal power flow in radial networks.
基金the National Natural Science Foundation of China(Nos.11171083,11301123,and 11571087)the Natural Science Foundation of Zhejiang Province(Nos.LZ14A010003 and LY17A010028).
文摘In this paper,we consider the second-order cone tensor eigenvalue complementarity problem(SOCTEiCP)and present three different reformulations to the model under consideration.Specifically,for the general SOCTEiCP,we first show its equivalence to a particular variational inequality under reasonable conditions.A notable benefit is that such a reformulation possibly provides an efficient way for the study of properties of the problem.Then,for the symmetric and sub-symmetric SOCTEiCPs,we reformulate them as appropriate nonlinear programming problems,which are extremely beneficial for designing reliable solvers to find solutions of the considered problem.Finally,we report some preliminary numerical results to verify our theoretical results.
基金supported by National Natural Science Foundation of China (Grant Nos. 10571134, 10671010)Natural Science Foundation of Tianjin (Grant No. 07JCYBJC05200)
文摘In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions.
基金supported by National Natural Science Foundation of China(Grant No. 10871144)the Natural Science Foundation of Tianjin Province (Grant No. 07JCYBJC05200)
文摘Given a real(finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product,we consider the Lorentz cone linear complementarity problem,denoted by LCP(T,Ω,q),where T is a continuous linear operator on H,ΩH is a Lorentz cone,and q ∈ H.We investigate some conditions for which the problem concerned has a unique solution for all q ∈ H(i.e.,T has the GUS-property).Several sufficient conditions and several necessary conditions are given.In particular,we provide two suficient and necessary conditions of T having the GUS-property.Our approach is based on properties of the Jordan product and the technique from functional analysis,which is different from the pioneer works given by Gowda and Sznajder(2007) in the case of finite-dimensional spaces.
文摘The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.
文摘In this paper, we discuss the existence of positive solutions of the secondorder delay boundary value problems. By applying the fixed-point theorem in a cone, we show the existence of at least one positive solution with singularity and the superlinear semipositone. As an demonstrate our results. application, we also give some examples todemonstrate our results.
基金supported by National Natural Science Foundation of China (Grant Nos.10771026,10901094)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.
基金Supported partially by National Natural Science Foundation of China (Grant Nos. 10871056 and 10971150)Science Research Foundation in Harbin Institute of Technology (Grant No. HITC200708)
文摘The well-known Lyapunov's theorem in matrix theory/continuous dynamical systems as- serts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA^* is positive definite. In this paper, we extend this theorem to the setting of any Euclidean Jordan algebra V. Given any element a E V, we consider the corresponding Lyapunov transformation La and show that the P and S-properties are both equivalent to a being positive. Then we characterize the R0-property for La and show that La has the R0-property if and only if a is invertible. Finally, we provide La with some characterizations of the E0-property and the nondegeneracy property.