Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applicatio...Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.展开更多
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To...Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To address the importance of seepage in soil erosion modeling, a total of 23 treatments with 3 factors, row grade, field slope and ridge height, in 5 gradients were arranged in an orthogonal rotatable central composite design. The second-order polynomial regression model for predicting the sediment yield was improved by using the measured or predicted seepage discharge as an input factor, which increased the coefficient of determination(R^2) from 0.743 to 0.915 or 0.893. The improved regression models combined with the measured seepage discharge had a lower P(0.007) compared to those combined with the predicted seepage discharge(P=0.016). With the measured seepage discharge incorporated, some significant(P<0.050) effects and interactions of influential factors on sediment yield were detected, including the row grade and its interactions with the field slope, ridge height and seepage discharge, the quadratic terms of the field slope and its interactions with the row grade and seepage discharge. In the regression model with the predicted seepage discharge as an influencing factor, only the interaction between row grade and seepage discharge significantly affected the sediment yield. The regression model incorporated with predicted seepage discharge may be expressed simply and can be used effectively when measured seepage discharge data are not available.展开更多
To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model t...To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment.By means of three group freezing tests with different seepage velocities,we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage.The temperature upstream was obviously higher than that downstream.The temperature gradient upstream was also steeper than that downstream.With a higher seepage velocity,the asymmetry of the temperature field is more pronounced.The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile.The cryogenic barrier section is somewhat"heartshaped".With the increasing velocity of the seepage flow,the cooling rate of the soil decreases.It takes much time to reach the equilibrium state of the soil mass.In our study,seepage flow velocities of 0 m/d,7.5 m/d,and 15 m/d showed the soilcooling rate of 4.35°C/h,4.96°C/h,and 1.72°C/h,respectively.展开更多
In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepa...In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepage velocities are measured through applying AC voltage on the optical fiber.The analyzing results show that the optical fiber heating temperature and seepage velocity are related in quadratic function.The quantitative relations of optical fiber temperature and seepage velocity under different soil types and compaction degree are fitted.Analysis on how the compaction degree influences the relation of optical fiber temperature and seepage velocity shows that with the increase of compaction degree,optical fiber heating temperature will gradually decline.The influence of soil type on fiber heating temperature is very complex.In practice,according to the characteristics of the soil,determining quantitative relationship and implementing quantitative monitoring of the seepage velocity are needed.展开更多
Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An...Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams.展开更多
The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulat...The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulation, migration and production, a mathematical model of unstable seepage in dual-porosity sealed shale-gas reservoir was developed while considering Knudsen diffusion, slip-flow effect and Langmuir desorption effect. By solving the model utilizing the Stehfest numerical inversion and computer programming in Laplace space, several typical curves of bottomhole pressure were obtained. In this paper, we discussed the effects of several parameters on the pressure dynamics, i.e. storativity ratio, Langmuir volume, Langmuir pressure, adsorption-desorption, tangential momentum accommodation coefficient, flow coefficient, boundary. The results show that the desorbed gas extends the time for fluid to flow from matrix system to fracture system;the changes of Langmuir volume and Langmuir pressure associated with desorption and adsorption effect are the internal causes of the storativity ratio change;when the tangential momentum accommodation coefficient decreases, the time for pressure wave to spread to the border reduces;interporosity flow coefficient determines the occurrence time of the transition stage;boundary range restricts the time for pressure wave to spread to the border.展开更多
In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this prob...In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given.展开更多
Dynamics of gas seepage as a borderline subject of geosciences mainly studies the flow and distribution of gas in coalseams or gas-bearing strata. In this paper new dynamic models for coal gas flow are developed.Using...Dynamics of gas seepage as a borderline subject of geosciences mainly studies the flow and distribution of gas in coalseams or gas-bearing strata. In this paper new dynamic models for coal gas flow are developed.Using in-situ measured parameters of coal gas dynamics, the new models are tested with three existing dynamic models in the world. The results show that the new models approach the reality more cIose than the other three models.In addition, the other relations or indices helped to evaluate gas flow in coalseam are proposed.展开更多
At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments...At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields.展开更多
本文详细阐述了渗流力学经典理论——达西定律的发展历程及其适用条件,并从Navier-Stokes(N-S)方程推导出了达西定律在多孔介质中的毛细管渗流和裂缝渗流中的数学表达式。文章指出了当前达西定律应用中存在的8大问题,并综合分析了渗流...本文详细阐述了渗流力学经典理论——达西定律的发展历程及其适用条件,并从Navier-Stokes(N-S)方程推导出了达西定律在多孔介质中的毛细管渗流和裂缝渗流中的数学表达式。文章指出了当前达西定律应用中存在的8大问题,并综合分析了渗流力学理论在油气田开发中的主要挑战。针对这些挑战,本文提出了一系列对策和思考。文章强调指出:构建多尺度、多物理场耦合模型并借助AI科学计算是揭示油气储层复杂真实流动机制,填补目前理论空白的必由之路。建议指出:进一步发展核磁共振、电镜扫描及智能数据与图像处理等高精度实验技术,以直观展现流体在储层中的流动行为和过程。最后,建议综合运用实验研究、新理论模型建立和AI科学研究方法(AI for Science),突破油气渗流力学理论中目前遇到的挑战。研究成果可为我国高校、科研机构和研究者开展石油科学理论研究和课题立项提供重要参考,同时可为我国油气资源可持续进行科学和技术战略规划提供强有力的技术支撑。展开更多
基金The financial supports from the National Natural Science Foundation of China(Grant Nos.51988101,51925906 and 52122905)are gratefully acknowledged.
文摘Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金funded by the National Natural Science Foundation of China (41701311)the Natural Science Foundation of Shandong Province (ZR2017JL019)+1 种基金the Project of Introducing and Cultivating Young Talent in the Universities of Shandong Province (LUJIAORENZI20199)the Shandong Key Research and Development Program (2018GSF117001)。
文摘Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To address the importance of seepage in soil erosion modeling, a total of 23 treatments with 3 factors, row grade, field slope and ridge height, in 5 gradients were arranged in an orthogonal rotatable central composite design. The second-order polynomial regression model for predicting the sediment yield was improved by using the measured or predicted seepage discharge as an input factor, which increased the coefficient of determination(R^2) from 0.743 to 0.915 or 0.893. The improved regression models combined with the measured seepage discharge had a lower P(0.007) compared to those combined with the predicted seepage discharge(P=0.016). With the measured seepage discharge incorporated, some significant(P<0.050) effects and interactions of influential factors on sediment yield were detected, including the row grade and its interactions with the field slope, ridge height and seepage discharge, the quadratic terms of the field slope and its interactions with the row grade and seepage discharge. In the regression model with the predicted seepage discharge as an influencing factor, only the interaction between row grade and seepage discharge significantly affected the sediment yield. The regression model incorporated with predicted seepage discharge may be expressed simply and can be used effectively when measured seepage discharge data are not available.
基金financially supported by the National Natural Science Foundation of China (No. 41201070)Project of Education Department of Jiangxi Province (GJJ14494)+1 种基金Development Fund Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE 201508)Development Fund Project of State Key Laboratory for Geomechanics & Deep Underground Engineering (SKLGDUEK1505)
文摘To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment.By means of three group freezing tests with different seepage velocities,we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage.The temperature upstream was obviously higher than that downstream.The temperature gradient upstream was also steeper than that downstream.With a higher seepage velocity,the asymmetry of the temperature field is more pronounced.The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile.The cryogenic barrier section is somewhat"heartshaped".With the increasing velocity of the seepage flow,the cooling rate of the soil decreases.It takes much time to reach the equilibrium state of the soil mass.In our study,seepage flow velocities of 0 m/d,7.5 m/d,and 15 m/d showed the soilcooling rate of 4.35°C/h,4.96°C/h,and 1.72°C/h,respectively.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Nos. 2012088,2013093)
文摘In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepage velocities are measured through applying AC voltage on the optical fiber.The analyzing results show that the optical fiber heating temperature and seepage velocity are related in quadratic function.The quantitative relations of optical fiber temperature and seepage velocity under different soil types and compaction degree are fitted.Analysis on how the compaction degree influences the relation of optical fiber temperature and seepage velocity shows that with the increase of compaction degree,optical fiber heating temperature will gradually decline.The influence of soil type on fiber heating temperature is very complex.In practice,according to the characteristics of the soil,determining quantitative relationship and implementing quantitative monitoring of the seepage velocity are needed.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51709021,52079120)the project funded by China Postdoctoral Science Foundation(Grant No.2020M670387)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019nkzd03).
文摘Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams.
文摘The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulation, migration and production, a mathematical model of unstable seepage in dual-porosity sealed shale-gas reservoir was developed while considering Knudsen diffusion, slip-flow effect and Langmuir desorption effect. By solving the model utilizing the Stehfest numerical inversion and computer programming in Laplace space, several typical curves of bottomhole pressure were obtained. In this paper, we discussed the effects of several parameters on the pressure dynamics, i.e. storativity ratio, Langmuir volume, Langmuir pressure, adsorption-desorption, tangential momentum accommodation coefficient, flow coefficient, boundary. The results show that the desorbed gas extends the time for fluid to flow from matrix system to fracture system;the changes of Langmuir volume and Langmuir pressure associated with desorption and adsorption effect are the internal causes of the storativity ratio change;when the tangential momentum accommodation coefficient decreases, the time for pressure wave to spread to the border reduces;interporosity flow coefficient determines the occurrence time of the transition stage;boundary range restricts the time for pressure wave to spread to the border.
文摘In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given.
文摘Dynamics of gas seepage as a borderline subject of geosciences mainly studies the flow and distribution of gas in coalseams or gas-bearing strata. In this paper new dynamic models for coal gas flow are developed.Using in-situ measured parameters of coal gas dynamics, the new models are tested with three existing dynamic models in the world. The results show that the new models approach the reality more cIose than the other three models.In addition, the other relations or indices helped to evaluate gas flow in coalseam are proposed.
文摘At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields.
文摘本文详细阐述了渗流力学经典理论——达西定律的发展历程及其适用条件,并从Navier-Stokes(N-S)方程推导出了达西定律在多孔介质中的毛细管渗流和裂缝渗流中的数学表达式。文章指出了当前达西定律应用中存在的8大问题,并综合分析了渗流力学理论在油气田开发中的主要挑战。针对这些挑战,本文提出了一系列对策和思考。文章强调指出:构建多尺度、多物理场耦合模型并借助AI科学计算是揭示油气储层复杂真实流动机制,填补目前理论空白的必由之路。建议指出:进一步发展核磁共振、电镜扫描及智能数据与图像处理等高精度实验技术,以直观展现流体在储层中的流动行为和过程。最后,建议综合运用实验研究、新理论模型建立和AI科学研究方法(AI for Science),突破油气渗流力学理论中目前遇到的挑战。研究成果可为我国高校、科研机构和研究者开展石油科学理论研究和课题立项提供重要参考,同时可为我国油气资源可持续进行科学和技术战略规划提供强有力的技术支撑。