The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in...The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.展开更多
The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochro...The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work.Time evolutions of the photoionization properties of the four-color,three-step process are given.The population trapping effects occur intensely in monochromatic excitation,while it gradually turns weak as the laser bandwidth increases.The effects of bandwidth,Rabi frequency,time delay,and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields.The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed.The ionization probability and selectivity factors,as evaluation indexes,are difficult to improve synchronously by adjusting systematic parameters.Besides,the existence of metastable state may play a negative role when its population is low enough.展开更多
1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put ...1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst.展开更多
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t...The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.展开更多
The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptio...The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptions than the analytical models and therefore are more wildly used in modeling complex RMS. But in the absence of an efficient gradient analysis method of the objective function, it is time-consuming in solving large-scale problems by using a simulation model coupled with a meta-heuristics algorithm. In this paper, a new approach by means of characteristic state space is presented to improve the efficiency of the configuration selection for an RMS. First, a characteristic state equation is set up to represent the input and the output resources of each basic activity in an RMS. A production process model in terms of matrix equations is established by iterating the equations of basic activities according to the resource flows. This model introduces the production process into a characteristic state space for further analysis. Second, the properties of the characteristic state space are presented. On the basis of these properties, the configuration selection in an RMS is considered as a path-planning problem, and the gradient of the objective function is computed. Modified simulated annealing(SA) is also presented, in which neighborhood generation is guided by the gradient to accelerate convergence and reduce the run time of the optimization procedure. Finally, several case studies on the configuration selection for some actual reconfigurable assembly job-shops are presented and compared to the classical SA. The comparison shows relatively positive results. This study provides a more efficient configuration selection approach by using the gradient of the objective function and presents the relevant theories on which it is based.展开更多
We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we ...We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.展开更多
A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were...A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).展开更多
We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitud...We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitudinal focusing force and a longitudinally oriented one provides only the transverse force. The hexapole focusing position are designed to realize the simultaneous focusing in three directions. The additional longitudinal focusing compared with the conventional hexapole can suppress the effect of chromatic aberration induced by the molecular longitudinal velocity spread, thus improving the state-selection purity as well as the beam density. Performance comparison of state selection between this 3D focusing hexapole and a conventional one is made using numerical trajectory simulations, choosing CHF3 molecules as a tester. It is confirmed that our proposal can improve the state-selection purity from 68.2% to 96.1% and the beam density by a factor of 2.3.展开更多
The officer- selecting system is an important part of the administrative legal system of the ancient China. In the ancient times,there were different officer- selecting systems in China,such as the hereditary system,t...The officer- selecting system is an important part of the administrative legal system of the ancient China. In the ancient times,there were different officer- selecting systems in China,such as the hereditary system,the recommendatory system,the nine- rank system and the imperial examination system and so on. Different officer- selecting systems are reasonable and have some limitations at the same time. Besides,they own some realistic significance for the cadre- selecting system of the present.展开更多
The establishment of the State Power Grid Development Corp Ltd(SPG) was officially announced on June 18, marking the government’s determination to form a nationwide united power network to make the best of power gene...The establishment of the State Power Grid Development Corp Ltd(SPG) was officially announced on June 18, marking the government’s determination to form a nationwide united power network to make the best of power generating capability. The State-owned corporation, with 2.5 billion yuan ($301 million) worth of operating capital raised by the government, will be responsible for investment. construction and management of the power transmission and substation projects involved in the construction of the Three Gorges Project.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is...When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.展开更多
We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the gro...We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.展开更多
Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Bas...Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.展开更多
We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Ba...We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH_3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.展开更多
Photo thermoelectric generators (PTEGs) are solid state heat engines that generate electricity from concentrated sunlight. In this paper, we developed a novel detailed balance model for PTEGs and applied this model to...Photo thermoelectric generators (PTEGs) are solid state heat engines that generate electricity from concentrated sunlight. In this paper, we developed a novel detailed balance model for PTEGs and applied this model to both state-of-the-art and idealized materials. This model uses thermoelectric compatibility theory to provide analytic solutions to device efficiency in idealized materials with temperature-dependent properties. The method for the theoretical calculation of the mechanism of absorption and refraction of light radiation of a selected wavelength in the volume of a photoelectric converter and the design of an effective photo thermal converter with a fixed slit are presented in the article. Direct- and non-direct-electron transitions from the valence band to the conduction band are analyzed. The possibility of optimal distribution of the light spectrum on the frontal surfaces of the solar cell and thermoelectric converter is shown. According to the results of experimental studies, a conclusion was made that the efficiency of a photo converter increases by a factor of three as compared with analogues, but operating without a thermal converter.展开更多
We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>...We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>clock state with optical pumping directly after being launched up,followed by a pushing beam to push away the atoms remaining in the|F=4>state.With a state selection efficiency exceeding 92%,this optical method can substitute the traditional microwave state selection,and helps to develop a more compact physical package.A Ramsey fringe has been achieved with this optical state selection method,and a contrast of 90%is obtained with a full width half maximum of 0.92 Hz.The short-term frequency stability of 6.8×10^(-14)(τ/s)^(-1/2) is acquired.In addition,the number of detected atoms is increased by a factor of 1.7 with the optical state selection.展开更多
Species in Galliformes have elaborate ritual courtship displays,often including strutting,fluffing of tail or head feathers,and vocal sounds that serve as excellent examples of sexual selection.According to the male o...Species in Galliformes have elaborate ritual courtship displays,often including strutting,fluffing of tail or head feathers,and vocal sounds that serve as excellent examples of sexual selection.According to the male orientation to the female while either posturing or moving,these courtship displays of gallinaceous species can be classified into three categories:1)‘frontal displays’,2)‘lateral displays’,and 3)‘both frontal and lateral displays’.Questions regarding which category of displays is the ancestral state and the evolutionary history of courtship displays in Galliformes remain unanswered.We collected and classified 131 species in terms of their courtship displays into the three categories listed above and carried out a large-scale comparative analysis to reveal the evolutionary trajectory of this trait.We found that the ancestral state of courtship displays of Galliformes involves both relatively short and straightforward frontal and lateral elements(i.e.,the category of‘both frontal and lateral displays’).Furthermore,ancestral trait reconstructions suggest that transitions from‘lateral displays’to‘frontal displays’occurred more frequently than the other way around(i.e.,from‘frontal displays’to‘lateral displays’).In addition,some transitions occurred from‘both frontal and lateral displays’to‘lateral displays’but not from‘both frontal and lateral displays’to‘frontal displays’.Ancestral state reconstruction of courtship displays at the root of the Galliformes phylogeny supports the‘both frontal and lateral displays’first scenario.This original state then evolved towards two extremes,either‘frontal displays’or‘lateral displays’,with more complicated and elaborate display components.Moreover,subsequent transitions occurred from‘lateral displays’to‘frontal displays’much more frequently than the other way around during the evolutionary history,indicating positive selection of‘frontal displays’.展开更多
In this paper, the assignment of acomplex 8-spin-half system (7,7-dichloro-6-oxo-2-tio-bicycle [3.2.0] heptane-4-carboxlic acid) using nuclear magnetic resonance (NMR) techniques is presented and the hamiltonian o...In this paper, the assignment of acomplex 8-spin-half system (7,7-dichloro-6-oxo-2-tio-bicycle [3.2.0] heptane-4-carboxlic acid) using nuclear magnetic resonance (NMR) techniques is presented and the hamiltonian obtained, was used to demonstrate universal control. The system has 313C and 51H,in our work, we carried out traditional 1-D and 2-D experiments and also made use of coherent control together with simulation to get the full hamiltonian of this weakly coupled system. Spin-echo J-resolved 2-D experiments were used to obtain the heteronuclear and homonuclear coupling values; COSY45 experiments were used to obtain the signs of homonuclear coupling constants. The signs of heteronuclear coupling constants were obtained using the polarization transfer method. All the data obtained in the experiments were used in the simulation of the 1-D spectra and then optimized using the least square fitting method. After obtaining the full hamiltonian of the 8-spin system, we used it in QIP, prepared pseudopure states and implemented 1-qubit and 2-qubit gates on one of its 6-qubit subsystems.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1500500)。
文摘The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.
文摘The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work.Time evolutions of the photoionization properties of the four-color,three-step process are given.The population trapping effects occur intensely in monochromatic excitation,while it gradually turns weak as the laser bandwidth increases.The effects of bandwidth,Rabi frequency,time delay,and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields.The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed.The ionization probability and selectivity factors,as evaluation indexes,are difficult to improve synchronously by adjusting systematic parameters.Besides,the existence of metastable state may play a negative role when its population is low enough.
基金supported by National Natural Science Foundation of China(22021004).
文摘1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst.
基金supported in part by the National Natural Science Foundation of China(92167201,62273264,61933007)。
文摘The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.
基金supported by National High-tech Research and Development Program of China(863Program,Grant No.2006AA04Z101)Dalian Municipal Science and Technology Program of China(Grant No.2008J31JH011)
文摘The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptions than the analytical models and therefore are more wildly used in modeling complex RMS. But in the absence of an efficient gradient analysis method of the objective function, it is time-consuming in solving large-scale problems by using a simulation model coupled with a meta-heuristics algorithm. In this paper, a new approach by means of characteristic state space is presented to improve the efficiency of the configuration selection for an RMS. First, a characteristic state equation is set up to represent the input and the output resources of each basic activity in an RMS. A production process model in terms of matrix equations is established by iterating the equations of basic activities according to the resource flows. This model introduces the production process into a characteristic state space for further analysis. Second, the properties of the characteristic state space are presented. On the basis of these properties, the configuration selection in an RMS is considered as a path-planning problem, and the gradient of the objective function is computed. Modified simulated annealing(SA) is also presented, in which neighborhood generation is guided by the gradient to accelerate convergence and reduce the run time of the optimization procedure. Finally, several case studies on the configuration selection for some actual reconfigurable assembly job-shops are presented and compared to the classical SA. The comparison shows relatively positive results. This study provides a more efficient configuration selection approach by using the gradient of the objective function and presents the relevant theories on which it is based.
文摘We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.
基金the financial support(Research Council Grant)provided by Isfahan University of Technology(Iran).
文摘A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).
基金supported by the National Natural Science Foundation of China(Grant Nos.11504118,11574099,and 11474115)
文摘We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitudinal focusing force and a longitudinally oriented one provides only the transverse force. The hexapole focusing position are designed to realize the simultaneous focusing in three directions. The additional longitudinal focusing compared with the conventional hexapole can suppress the effect of chromatic aberration induced by the molecular longitudinal velocity spread, thus improving the state-selection purity as well as the beam density. Performance comparison of state selection between this 3D focusing hexapole and a conventional one is made using numerical trajectory simulations, choosing CHF3 molecules as a tester. It is confirmed that our proposal can improve the state-selection purity from 68.2% to 96.1% and the beam density by a factor of 2.3.
文摘The officer- selecting system is an important part of the administrative legal system of the ancient China. In the ancient times,there were different officer- selecting systems in China,such as the hereditary system,the recommendatory system,the nine- rank system and the imperial examination system and so on. Different officer- selecting systems are reasonable and have some limitations at the same time. Besides,they own some realistic significance for the cadre- selecting system of the present.
文摘The establishment of the State Power Grid Development Corp Ltd(SPG) was officially announced on June 18, marking the government’s determination to form a nationwide united power network to make the best of power generating capability. The State-owned corporation, with 2.5 billion yuan ($301 million) worth of operating capital raised by the government, will be responsible for investment. construction and management of the power transmission and substation projects involved in the construction of the Three Gorges Project.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.
文摘When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.
基金Supported by the Natural Science Foundation of Jiangxi,China under Grant No.2008GQW0017the Scientific Research Foundation of Jiangxi Provincial Department of Education under Grant No.GJJ09504the Foundation of Talent of Jinggang of Jiangxi Province under Grant No.2008DQ00400
文摘We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.
基金ACKNOWLEDGEMENTS This work is supported by Natural Science Foundation of China (No. 61340035) and Guangzhou science and technology plan projects (2014-132000764).
文摘Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574116,11534004,10704028,and 11474123)the Natural Science Foundation of Jilin Province,China(Grant No.20170101154JC)
文摘We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH_3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.
文摘Photo thermoelectric generators (PTEGs) are solid state heat engines that generate electricity from concentrated sunlight. In this paper, we developed a novel detailed balance model for PTEGs and applied this model to both state-of-the-art and idealized materials. This model uses thermoelectric compatibility theory to provide analytic solutions to device efficiency in idealized materials with temperature-dependent properties. The method for the theoretical calculation of the mechanism of absorption and refraction of light radiation of a selected wavelength in the volume of a photoelectric converter and the design of an effective photo thermal converter with a fixed slit are presented in the article. Direct- and non-direct-electron transitions from the valence band to the conduction band are analyzed. The possibility of optimal distribution of the light spectrum on the frontal surfaces of the solar cell and thermoelectric converter is shown. According to the results of experimental studies, a conclusion was made that the efficiency of a photo converter increases by a factor of three as compared with analogues, but operating without a thermal converter.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873044).
文摘We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>clock state with optical pumping directly after being launched up,followed by a pushing beam to push away the atoms remaining in the|F=4>state.With a state selection efficiency exceeding 92%,this optical method can substitute the traditional microwave state selection,and helps to develop a more compact physical package.A Ramsey fringe has been achieved with this optical state selection method,and a contrast of 90%is obtained with a full width half maximum of 0.92 Hz.The short-term frequency stability of 6.8×10^(-14)(τ/s)^(-1/2) is acquired.In addition,the number of detected atoms is increased by a factor of 1.7 with the optical state selection.
基金National Science and Technology Major Project(No.2018ZX10101004)X.R.was supported by the National Natural Science Foundation of China(No.31800320)+1 种基金the Joint Fund of the Natural Science Foundation of Hainan Province(No.320RC506)the Scientific Research start-up Fund of Hainan University(No.KYQD(ZR)20057).
文摘Species in Galliformes have elaborate ritual courtship displays,often including strutting,fluffing of tail or head feathers,and vocal sounds that serve as excellent examples of sexual selection.According to the male orientation to the female while either posturing or moving,these courtship displays of gallinaceous species can be classified into three categories:1)‘frontal displays’,2)‘lateral displays’,and 3)‘both frontal and lateral displays’.Questions regarding which category of displays is the ancestral state and the evolutionary history of courtship displays in Galliformes remain unanswered.We collected and classified 131 species in terms of their courtship displays into the three categories listed above and carried out a large-scale comparative analysis to reveal the evolutionary trajectory of this trait.We found that the ancestral state of courtship displays of Galliformes involves both relatively short and straightforward frontal and lateral elements(i.e.,the category of‘both frontal and lateral displays’).Furthermore,ancestral trait reconstructions suggest that transitions from‘lateral displays’to‘frontal displays’occurred more frequently than the other way around(i.e.,from‘frontal displays’to‘lateral displays’).In addition,some transitions occurred from‘both frontal and lateral displays’to‘lateral displays’but not from‘both frontal and lateral displays’to‘frontal displays’.Ancestral state reconstruction of courtship displays at the root of the Galliformes phylogeny supports the‘both frontal and lateral displays’first scenario.This original state then evolved towards two extremes,either‘frontal displays’or‘lateral displays’,with more complicated and elaborate display components.Moreover,subsequent transitions occurred from‘lateral displays’to‘frontal displays’much more frequently than the other way around during the evolutionary history,indicating positive selection of‘frontal displays’.
文摘In this paper, the assignment of acomplex 8-spin-half system (7,7-dichloro-6-oxo-2-tio-bicycle [3.2.0] heptane-4-carboxlic acid) using nuclear magnetic resonance (NMR) techniques is presented and the hamiltonian obtained, was used to demonstrate universal control. The system has 313C and 51H,in our work, we carried out traditional 1-D and 2-D experiments and also made use of coherent control together with simulation to get the full hamiltonian of this weakly coupled system. Spin-echo J-resolved 2-D experiments were used to obtain the heteronuclear and homonuclear coupling values; COSY45 experiments were used to obtain the signs of homonuclear coupling constants. The signs of heteronuclear coupling constants were obtained using the polarization transfer method. All the data obtained in the experiments were used in the simulation of the 1-D spectra and then optimized using the least square fitting method. After obtaining the full hamiltonian of the 8-spin system, we used it in QIP, prepared pseudopure states and implemented 1-qubit and 2-qubit gates on one of its 6-qubit subsystems.