期刊文献+
共找到38,873篇文章
< 1 2 250 >
每页显示 20 50 100
Using ontology and rules to retrieve the semantics of disaster remote sensing data 被引量:1
1
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
下载PDF
Spatio-temporal GIS Data Model Based on Event Semantics 被引量:5
2
作者 XUZhihong BIANFuling 《Geo-Spatial Information Science》 2003年第3期43-47,共5页
There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way fo... There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database. 展开更多
关键词 event semantics temporal GIS MODEL
下载PDF
Enhancing Deep Learning Semantics:The Diffusion Sampling and Label-Driven Co-Attention Approach
3
作者 ChunhuaWang Wenqian Shang +1 位作者 Tong Yi Haibin Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期1939-1956,共18页
The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-atten... The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods. 展开更多
关键词 semantic representation sampling attention label-driven co-attention attention mechanisms
下载PDF
Task-Oriented Semantic Communication with Foundation Models
4
作者 Chen Mingkai Liu Minghao +2 位作者 Zhang Zhe Xu Zhiping Wang Lei 《China Communications》 SCIE CSCD 2024年第7期65-77,共13页
In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence... In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication. 展开更多
关键词 diffusion model foundation model joint source-channel coding task-oriented semantic communication
下载PDF
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
5
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3D lidar point cloud data augmentation RandomFusion semantic segmentation
下载PDF
ED-Ged:Nighttime Image Semantic Segmentation Based on Enhanced Detail and Bidirectional Guidance
6
作者 Xiaoli Yuan Jianxun Zhang +1 位作者 Xuejie Wang Zhuhong Chu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2443-2462,共20页
Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to fac... Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets. 展开更多
关键词 Night driving semantic segmentation nighttime image processing adverse illumination differentiable filters
下载PDF
Sec-Auditor:A Blockchain-Based Data Auditing Solution for Ensuring Integrity and Semantic Correctness
7
作者 Guodong Han Hecheng Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2121-2137,共17页
Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when ... Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one. 展开更多
关键词 Provable data possession public auditing cloud storage data integrity semantic correctness
下载PDF
Enhancing Cross-Lingual Image Description: A Multimodal Approach for Semantic Relevance and Stylistic Alignment
8
作者 Emran Al-Buraihy Dan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3913-3938,共26页
Cross-lingual image description,the task of generating image captions in a target language from images and descriptions in a source language,is addressed in this study through a novel approach that combines neural net... Cross-lingual image description,the task of generating image captions in a target language from images and descriptions in a source language,is addressed in this study through a novel approach that combines neural network models and semantic matching techniques.Experiments conducted on the Flickr8k and AraImg2k benchmark datasets,featuring images and descriptions in English and Arabic,showcase remarkable performance improvements over state-of-the-art methods.Our model,equipped with the Image&Cross-Language Semantic Matching module and the Target Language Domain Evaluation module,significantly enhances the semantic relevance of generated image descriptions.For English-to-Arabic and Arabic-to-English cross-language image descriptions,our approach achieves a CIDEr score for English and Arabic of 87.9%and 81.7%,respectively,emphasizing the substantial contributions of our methodology.Comparative analyses with previous works further affirm the superior performance of our approach,and visual results underscore that our model generates image captions that are both semantically accurate and stylistically consistent with the target language.In summary,this study advances the field of cross-lingual image description,offering an effective solution for generating image captions across languages,with the potential to impact multilingual communication and accessibility.Future research directions include expanding to more languages and incorporating diverse visual and textual data sources. 展开更多
关键词 Cross-language image description multimodal deep learning semantic matching reward mechanisms
下载PDF
Generative Multi-Modal Mutual Enhancement Video Semantic Communications
9
作者 Yuanle Chen Haobo Wang +3 位作者 Chunyu Liu Linyi Wang Jiaxin Liu Wei Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2985-3009,共25页
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the... Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent. 展开更多
关键词 Generative adversarial networks multi-modal mutual enhancement video semantic transmission deep learning
下载PDF
FusionNN:A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection
10
作者 Li Wang Mingshan Xia +3 位作者 Hao Hu Jianfang Li Fengyao Hou Gang Chen 《Computers, Materials & Continua》 SCIE EI 2024年第5期2991-3006,共16页
With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althou... With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams. 展开更多
关键词 Feature fusion web anomaly detection MULTIMOdaL convolutional neural network(CNN) semantic feature extraction
下载PDF
Semantics Analytics of Origin-Destination Flows from Crowd Sensed Big Data 被引量:1
11
作者 Ning Cao Shengfang Li +6 位作者 Keyong Shen Sheng Bin Gengxin Sun Dongjie Zhu Xiuli Han Guangsheng Cao Abraham Campbell 《Computers, Materials & Continua》 SCIE EI 2019年第7期227-241,共15页
Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used ... Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately. 展开更多
关键词 Origin-destination(OD)flows semantics analytics complex network big data analysis
下载PDF
Large Language Model Based Semantic Parsing for Intelligent Database Query Engine
12
作者 Zhizhong Wu 《Journal of Computer and Communications》 2024年第10期1-13,共13页
With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha... With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge. 展开更多
关键词 semantic Query Large Language Models Intelligent database Natural Language Processing
下载PDF
Semantic Foundation and Evolution Mechanism of the“好不X”(haobu X)Structure
13
作者 Qian Wang Qinwei Zhou +2 位作者 Di Zhang Jiajia Shi Siqian Cheng 《Journal of Contemporary Educational Research》 2024年第10期1-15,共15页
In Chinese,the“好不X”(haobu X)structure expresses three types of meanings(negation,affirmation,and both affirmation-negation),where X exhibits differences in semantic symmetry.So far,no systematic explanatory theory... In Chinese,the“好不X”(haobu X)structure expresses three types of meanings(negation,affirmation,and both affirmation-negation),where X exhibits differences in semantic symmetry.So far,no systematic explanatory theory has been proposed to account for these differences.Therefore,this paper presents and argues for an explanatory hypothesis that progresses through four stages:“很不X”(henbu X)=>“好不X”(haobu X)(negation)=>[ironic use]“好不X”(haobu X)(affirmation)=>expansion and obstruction of affirmative“好不”(haobu).Specifically,(1)the basis of the negation“好不X”(haobu X)is attributed to“很不X”(henbu X),and the semantic asymmetry of X(excluding negative words)is explained using politeness principles,irony,and the semantic valence of negation results;(2)the ironic use of the negation“好不X”(haobu X)gives rise to the affirmation“好不X”(haobu X);(3)the grammaticalization and expansion of the positive meaning of“好不”(haobu)extend to X,which cannot appear in the negative meaning“好不__”structure(including words with opposite meanings and high polarity positive words).This explains the semantic symmetry of X in the positive meaning“好不X”(haobu X)structure;(4)when the affirmation“好不”(haobu)expands to the negation“好不X”(haobu X),it encounters both obstacles(X includes neutral and some positive words)and compatibility(X is some other positive words),thus explaining the semantic asymmetry of X in the affirmation-negation“好不X”(haobu X)(i.e.,X is positive words). 展开更多
关键词 haobu X semantic(a)symmetry of X Politeness principle IRONY semantic valence Adverb“hao”
下载PDF
Load Balance Strategy of Data Routing Algorithm Using Semantics for Deduplication Clusters
14
作者 Ze-Jun Jiang Zhi-Ke Zhang +2 位作者 Li-Fang Wang Chin-Chen Chang Li Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第3期277-282,共6页
The backup requirement of data centres is tremendous as the size of data created by human is massive and is increasing exponentially.Single node deduplication cannot meet the increasing backup requirement of data cent... The backup requirement of data centres is tremendous as the size of data created by human is massive and is increasing exponentially.Single node deduplication cannot meet the increasing backup requirement of data centres.A feasible way is the deduplication cluster,which can meet it by adding storage nodes.The data routing strategy is the key of the deduplication cluster.DRSS(data routing strategy using semantics) improves the storage utilization of MCS(minimum chunk signature) data routing strategy a lot.However,for the large deduplication cluster,the load balance of DRSS is worse than MCS.To improve the load balance of DRSS,we propose a load balance strategy used for DRSS,namely DRSSLB.When a node is overloaded,DRSSLB iteratively migrates the current smallest container of the node to the smallest node in the deduplication cluster until this overloaded node becomes non-overloaded.A container is the minimum unit of data migration.Similar files sharing the same features or file names are stored in the same container.This ensures the similar data groups are still in the same node after rebalancing the nodes.We use the dataset from the real world to evaluate DRSSLB.Experimental results show that,for various numbers of nodes of the deduplication cluster,the data skews of DRSSLB are under predefined value while the storage utilizations of DRSSLB do not nearly increase compared with DRSS,with the low penalty(the data migration rate is only6.5% when the number of nodes is 64). 展开更多
关键词 Index Terms--data routing strategy deduplicationcluster semantics load balance.
下载PDF
Research on Determining the Weights of Key Influencing Factors Based on Multi-Grained Binary Semantics
15
作者 Yun Li Weizhe Shu 《Journal of Electronic Research and Application》 2024年第6期157-161,共5页
To effectively address the complexity of the environment,information uncertainty,and variability among decision-makers in the event of an enterprise emergency,a multi-granularity binary semantic-based emergency decisi... To effectively address the complexity of the environment,information uncertainty,and variability among decision-makers in the event of an enterprise emergency,a multi-granularity binary semantic-based emergency decision-making method is proposed.Decision-makers use preferred multi-granularity non-uniform linguistic scales combined with binary semantics to represent the evaluation information of key influencing factors.Secondly,the weights were determined based on the proposed method.Finally,the proposed method’s effectiveness is validated using a case study of a fire incident in a chemical company. 展开更多
关键词 Multi-grained binary semantics EMERGENCY Key influencing factor
下载PDF
A Semantic-Sensitive Approach to Indoor and Outdoor 3D Data Organization
16
作者 Youchen Wei 《Journal of World Architecture》 2024年第1期1-6,共6页
Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data... Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it. 展开更多
关键词 Integrated data organization Indoor and outdoor 3D data models semantic models Spatial segmentation
下载PDF
Functionality Semantics of Predicate Data Flow Diagram
17
作者 高晓雷 缪淮扣 刘玲 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期309-316,共8页
SOZL (structured methodology + object-oriented methodology + Z language) is a language that attempts to integrate structured method, object-oriented method and formal method. The core of this language is predicate dat... SOZL (structured methodology + object-oriented methodology + Z language) is a language that attempts to integrate structured method, object-oriented method and formal method. The core of this language is predicate data flow diagram (PDFD). In order to eliminate the ambiguity of predicate data flow diagrams and their associated textual specifications, a formalization of the syntax and semantics of predicate data flow diagrams is necessary. In this paper we use Z notation to define an abstract syntax and the related structural constraints for the PDFD notation, and provide it with an axiomatic semantics based on the concept of data availability and functionality of predicate operation. Finally, an example is given to establish functionality consistent decomposition on hierarchical PDFD (HPDFD). 展开更多
关键词 predicate data flow diagram (PDFD) predicate operation (PO) hierarchical predicate data flow diagram (HPDFD) AVAILABILITY functionality semantics.
下载PDF
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
18
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
下载PDF
A Davidsonian Truth-theoretic Semantics Treatment of an EkeGusii Proverb
19
作者 Evans Gesura Mecha Isaac Nilson Opande 《宏观语言学》 2021年第2期68-94,共27页
The paper examines some doctrines of the Davidsonian Programme of truth conditional Semantics that relates truth to meaning using Tarski’s T-Convention,in relation to its efficacy in a semantic valuation of the EkeGu... The paper examines some doctrines of the Davidsonian Programme of truth conditional Semantics that relates truth to meaning using Tarski’s T-Convention,in relation to its efficacy in a semantic valuation of the EkeGusii proverb:Nda’indongi ereta morogi ereta moibi which exemplifies a kind of complex sentence that a given system of Semantics is meant to account for.The coverage of Davidsonian truth-conditional notion of T-convention and that of compositionality are considered to have only a partial reach in accounting for the meaning of the proverb by not incorporating pragmatic aspects.The failure of T-convention is not alleviated by the adoption of radical interpretation as posited by Davidson but is extended to consider aspects of pragmatic enrichment and dynamic Semantics. 展开更多
关键词 truth-conditions PRAGMATICS axiomatic truth-conditional semantics composi-tionality radical interpretation
下载PDF
There Is No Standard Model of ZFC and ZFC_(2) with Henkin Semantics
20
作者 Jaykov Foukzon Elena Men’kova 《Advances in Pure Mathematics》 2019年第9期685-744,共60页
In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. A possible generalization of L&#246;b’s theorem... In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. A possible generalization of L&#246;b’s theorem is considered. Main results are: 1) , 2) , 3) , 4) , 5) let k be inaccessible cardinal then . 展开更多
关键词 Godel Encoding Completion of ZFC Russell’s Paradox ω-Model Henkin semantics Full Second-Order semantic Strongly Inaccessible Cardinal
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部