Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA00...Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.展开更多
The dielectrophoretic technology has been one of the most frequently applied microfluidic technologies to manipulate particles.The way of a combination of controlled electroosmotic micro-vortices and dielectrophoresis...The dielectrophoretic technology has been one of the most frequently applied microfluidic technologies to manipulate particles.The way of a combination of controlled electroosmotic micro-vortices and dielectrophoresis to manipulate particles of different sizes was proposed in our previous work.However,the thickness of the modulating electrode is neglected.In practice,when the thickness of the modulating electrode increases,the channel flux increases,while the ability of the vortex to capture the particles reduces.In this study,a new method combining the field-modulating electroosmotic vortex and the insulating post is proposed to improve the manipulating capability of the field-modulated electroosmotic vortex to particles.The results indicate that there are three great advantages as the insulating post is placed on the channel wall on the same side of the modulating electrode.First,the capturing ability of the vortex to particles is greater due to the reduction of channel flux and the squeezing effect.Second,the range of regulating channel flux to achieve the optimal separation is extended.Third,the separation efficiency improves since the perfect separation can be achieved at a higher flow rate.Furthermore,the effects of the location and the size of the insulating post on particle separation are analyzed in detail.The present work could provide the reference for the application of the DEP technology.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
针对既有电气化铁路分段、分相式供电结构导致的列车过分相速度损失、再生制动能量利用率低等问题,提出一种分区所多功能潮流控制系统(multi-functional power flow control system for section post,SP-MPFC)及其控制策略,旨在充分利...针对既有电气化铁路分段、分相式供电结构导致的列车过分相速度损失、再生制动能量利用率低等问题,提出一种分区所多功能潮流控制系统(multi-functional power flow control system for section post,SP-MPFC)及其控制策略,旨在充分利用变流设备容量,兼顾实现分区所处列车柔性过分相、牵引网末端电压稳定与再生制动能量转移利用。首先,介绍分区所多功能潮流控制系统的拓扑结构。然后,详细分析了柔性过分相、牵引网末端电压稳定与再生制动能量转移利用3种功能的实现原理。在此基础上,提出分区所多功能潮流控制系统分层控制策略,其中能量管理层计算系统内各个变流器的有功/无功输出功率参考值,设备层协同控制多个变流器快速跟踪各自功率参考值。最后,通过仿真验证所提系统结构与控制策略的有效性。展开更多
The distribution of heat duties among individual separation subsystems and other aspects of heat integration in such systems are reviewed. Heat integration for different separation processes is investigated, using the...The distribution of heat duties among individual separation subsystems and other aspects of heat integration in such systems are reviewed. Heat integration for different separation processes is investigated, using the pinch point method. Such a study will provide theoretical guide lines for the proper choice of a desirable separation process.展开更多
基金supported by National Natural Science Foundation of China(No.21276036)Liaoning Provincial Natural Science Foundation of China(No.2015020123)the Fundamental Research Funds for the Central Universities of China(No.3132015154)
文摘Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
基金Project supported by the National Natural Science Foundation of China(No.11572139)。
文摘The dielectrophoretic technology has been one of the most frequently applied microfluidic technologies to manipulate particles.The way of a combination of controlled electroosmotic micro-vortices and dielectrophoresis to manipulate particles of different sizes was proposed in our previous work.However,the thickness of the modulating electrode is neglected.In practice,when the thickness of the modulating electrode increases,the channel flux increases,while the ability of the vortex to capture the particles reduces.In this study,a new method combining the field-modulating electroosmotic vortex and the insulating post is proposed to improve the manipulating capability of the field-modulated electroosmotic vortex to particles.The results indicate that there are three great advantages as the insulating post is placed on the channel wall on the same side of the modulating electrode.First,the capturing ability of the vortex to particles is greater due to the reduction of channel flux and the squeezing effect.Second,the range of regulating channel flux to achieve the optimal separation is extended.Third,the separation efficiency improves since the perfect separation can be achieved at a higher flow rate.Furthermore,the effects of the location and the size of the insulating post on particle separation are analyzed in detail.The present work could provide the reference for the application of the DEP technology.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
文摘针对既有电气化铁路分段、分相式供电结构导致的列车过分相速度损失、再生制动能量利用率低等问题,提出一种分区所多功能潮流控制系统(multi-functional power flow control system for section post,SP-MPFC)及其控制策略,旨在充分利用变流设备容量,兼顾实现分区所处列车柔性过分相、牵引网末端电压稳定与再生制动能量转移利用。首先,介绍分区所多功能潮流控制系统的拓扑结构。然后,详细分析了柔性过分相、牵引网末端电压稳定与再生制动能量转移利用3种功能的实现原理。在此基础上,提出分区所多功能潮流控制系统分层控制策略,其中能量管理层计算系统内各个变流器的有功/无功输出功率参考值,设备层协同控制多个变流器快速跟踪各自功率参考值。最后,通过仿真验证所提系统结构与控制策略的有效性。
基金Supported by the Research Promotion Foundation for Returned Scholar of the China Education Commission.
文摘The distribution of heat duties among individual separation subsystems and other aspects of heat integration in such systems are reviewed. Heat integration for different separation processes is investigated, using the pinch point method. Such a study will provide theoretical guide lines for the proper choice of a desirable separation process.