The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it ...The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it is across the equator.In this paper firstly the effects of short wave communication and usable time blocks and frequency ranges between the Antarctic Great Wall Station and Xinxiang from December 1985 to March 1986 are introduced. The comparison between the usable frequency ranges with the estimated MUF is made. The upper limit of frequency ranges of communication along the short great circle path basically agrees with the MUF but there is difference between them along the long great circle path.Secondly, the result of the propagation bearings experiment in January to February 1986 is introduced in more detail, The propagation along the great circle path from the Great Wall Station to Xinxiang is the main propagation mode. But the propagation along non great circle paths occurs at times between Great Wall Station and Xinxiang. The non great circle path propagation varies with time because the ionospheric absorption and other conditions which support the non great circle path propagation are the function of the time. So the courses of the non great circle path propagation may be different in the different time. The mechanism of the constructing non great circle path propagation has been analysed. We preliminarily think the main cause of propagation along non great circle path is the ground scatter. The stronger radialization of the side lobes of the antenna and the less absorption of the ionosphere contribute to forming non great circle path propagation.展开更多
齿轮传动涡扇发动机(geared turbo fan engine,GTF)的星型齿轮传动系统使用滑动轴承作为支承。GTF滑动轴承在高速高比压工况下工作,油膜压力较大,导致轴承会发生弹性变形。考虑滑动轴承的弹性变形以及润滑油温黏效应等的影响,基于计算...齿轮传动涡扇发动机(geared turbo fan engine,GTF)的星型齿轮传动系统使用滑动轴承作为支承。GTF滑动轴承在高速高比压工况下工作,油膜压力较大,导致轴承会发生弹性变形。考虑滑动轴承的弹性变形以及润滑油温黏效应等的影响,基于计算流体动力学方法建立了高速高比压织构滑动轴承的三维热弹流润滑分析模型,研究了考虑弹性变形影响的织构滑动轴承热流体润滑性能,并对比了织构滑动轴承和无织构滑动轴承的热弹流润滑性能。结果表明:考虑弹性变形的影响后,在相同大偏心率工况下织构滑动轴承的最大油膜压力、承载力和最大油膜温度均会明显降低,周向承载区域明显扩大,且温度和油膜压力在圆周方向上的变化也更加平缓;对比织构滑动轴承和无织构滑动轴承,两者的最大油膜压力、承载力、最大油膜温升和摩擦系数无明显差异,但油膜承载区的弹性变形有明显减小。展开更多
文摘The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it is across the equator.In this paper firstly the effects of short wave communication and usable time blocks and frequency ranges between the Antarctic Great Wall Station and Xinxiang from December 1985 to March 1986 are introduced. The comparison between the usable frequency ranges with the estimated MUF is made. The upper limit of frequency ranges of communication along the short great circle path basically agrees with the MUF but there is difference between them along the long great circle path.Secondly, the result of the propagation bearings experiment in January to February 1986 is introduced in more detail, The propagation along the great circle path from the Great Wall Station to Xinxiang is the main propagation mode. But the propagation along non great circle paths occurs at times between Great Wall Station and Xinxiang. The non great circle path propagation varies with time because the ionospheric absorption and other conditions which support the non great circle path propagation are the function of the time. So the courses of the non great circle path propagation may be different in the different time. The mechanism of the constructing non great circle path propagation has been analysed. We preliminarily think the main cause of propagation along non great circle path is the ground scatter. The stronger radialization of the side lobes of the antenna and the less absorption of the ionosphere contribute to forming non great circle path propagation.
文摘齿轮传动涡扇发动机(geared turbo fan engine,GTF)的星型齿轮传动系统使用滑动轴承作为支承。GTF滑动轴承在高速高比压工况下工作,油膜压力较大,导致轴承会发生弹性变形。考虑滑动轴承的弹性变形以及润滑油温黏效应等的影响,基于计算流体动力学方法建立了高速高比压织构滑动轴承的三维热弹流润滑分析模型,研究了考虑弹性变形影响的织构滑动轴承热流体润滑性能,并对比了织构滑动轴承和无织构滑动轴承的热弹流润滑性能。结果表明:考虑弹性变形的影响后,在相同大偏心率工况下织构滑动轴承的最大油膜压力、承载力和最大油膜温度均会明显降低,周向承载区域明显扩大,且温度和油膜压力在圆周方向上的变化也更加平缓;对比织构滑动轴承和无织构滑动轴承,两者的最大油膜压力、承载力、最大油膜温升和摩擦系数无明显差异,但油膜承载区的弹性变形有明显减小。