The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energ...The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.展开更多
The use of electrical energy for heating and cooling systems to control the temperature in greenhouses will lead to high production and product costs.To solve this problem,shallow geothermal energy as a local source o...The use of electrical energy for heating and cooling systems to control the temperature in greenhouses will lead to high production and product costs.To solve this problem,shallow geothermal energy as a local source of energy could be applied.In this study,a measurement model,the distribution profiles of temperature,and a preliminary assessment of the geothermal potential in the shallow zone at depths of 0.1 m to 3.6 m in Shouguang City,Shandong Province,eastern China were presented.The measurement results showed that the annual average temperature at depths of 0.1–3.6 m ranged from 13.1℃ to 17.6℃.Preliminary assessment results of the geothermal potential showed that the daily average temperature difference between the air and at depths of 1.5–3.6 m was mainly from 10℃ to 25℃ during the winter months and between-15℃ and-5℃ during the summer months.Therefore,the heating systems could operate during January,February,November,and December.In May,June,and July,the cooling systems could be applied.Moreover,the measurement model gave good stability results,and it could be used in combination with the monitoring of the groundwater table,a survey of the thermal conductivity of the soil,climate change studies,which helps reduce unnecessary time and costs.展开更多
为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对...为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对土壤平均温度的影响。最后,将PV/T-GSHP系统与其他系统进行能耗对比。研究结果表明:与GSHP系统相比,PV/T-GSHP系统机组COP从6.44提高到6.81,但由于增加了泵功,系统COP降到2.38,但考虑发电量,平均每年可获得10015.831元收益;相似结构建筑PV/T组件屋顶铺设占比越大,集热泵流量越小,土壤平均温升越快;不考虑发电量时,PV/T-GSHP系统比燃气锅炉系统能耗高8.46%,与燃煤锅炉和电锅炉系统相比,分别可节约11.04%和48.55%的能耗;综合发电量时,20 a实际获得的发电量收益折合成燃煤量为210.05 t。展开更多
文摘The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.
基金financially supported by The International Technology Cooperation of China(2015DFA00090)Key Laboratory of Agricultural Information Acquisition Technology,Thousand Youth Talents Plan from the Organization Department of CCP Central Committee(China Agricultural University,China,China Grant No.62339001)Fundamental Research Funds for the Central Universities in China,China(Grant No.2018QC174)。
文摘The use of electrical energy for heating and cooling systems to control the temperature in greenhouses will lead to high production and product costs.To solve this problem,shallow geothermal energy as a local source of energy could be applied.In this study,a measurement model,the distribution profiles of temperature,and a preliminary assessment of the geothermal potential in the shallow zone at depths of 0.1 m to 3.6 m in Shouguang City,Shandong Province,eastern China were presented.The measurement results showed that the annual average temperature at depths of 0.1–3.6 m ranged from 13.1℃ to 17.6℃.Preliminary assessment results of the geothermal potential showed that the daily average temperature difference between the air and at depths of 1.5–3.6 m was mainly from 10℃ to 25℃ during the winter months and between-15℃ and-5℃ during the summer months.Therefore,the heating systems could operate during January,February,November,and December.In May,June,and July,the cooling systems could be applied.Moreover,the measurement model gave good stability results,and it could be used in combination with the monitoring of the groundwater table,a survey of the thermal conductivity of the soil,climate change studies,which helps reduce unnecessary time and costs.
文摘为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对土壤平均温度的影响。最后,将PV/T-GSHP系统与其他系统进行能耗对比。研究结果表明:与GSHP系统相比,PV/T-GSHP系统机组COP从6.44提高到6.81,但由于增加了泵功,系统COP降到2.38,但考虑发电量,平均每年可获得10015.831元收益;相似结构建筑PV/T组件屋顶铺设占比越大,集热泵流量越小,土壤平均温升越快;不考虑发电量时,PV/T-GSHP系统比燃气锅炉系统能耗高8.46%,与燃煤锅炉和电锅炉系统相比,分别可节约11.04%和48.55%的能耗;综合发电量时,20 a实际获得的发电量收益折合成燃煤量为210.05 t。