In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be c...The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjuste...The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.展开更多
人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占...人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。展开更多
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic ...Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.展开更多
Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on t...Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.展开更多
The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechani...The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.展开更多
Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, ...Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, γ, β_4) deformation space, focusing on the rotation-induced shapecoexisting phenomena. As an example and basic test, the oblate property at the ground state in ^(184)Hg is well reproduced and the microscopic origin is analyzed from the single-particle structure. The present calculated results are compared with available experimental information, showing a good agreement. It is systematically found that in this isotonic chain several bands with different shapes(e.g., prolate, oblate and superdeformed prolate bands, seven non-collective band) may show a strong competition and coexisting phenomenon at a certain domain of the rotational frequency.展开更多
Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been m...Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been made in smooth join of non-trimmed surface patches, while there has been seldom research on smoothly stitching trimmed surface patches together. This paper studies the problem of global continuity adjustment, damaged hole repair and local shape optimization for complex trimmed surface model, and presents a uniform scheme to deal with continuity adjustment of trimmed surfaces and geometric repair of local broken region. Constrained B-spline surface refitting technique and trim calculation are first utilized to achieve global G^1 continuity, and then local shape optimization functional is adopted to reduce fitting error and improve local quality of refitted surface patch. The proposed approach is applied to a discontinuity ship hull surface model with an irregular hole, and the result demonstrates the validation of our method. Furthermore, on the premise of global continuity, the proposed locally repairing damaged surface model provides a better foundation for following research work, such as topology recovery technique for complex surface model after geometric repair.展开更多
A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing inciden...A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.展开更多
A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is...A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weld joint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.展开更多
In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without ...In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without contact and so avoid contact-related problems. The present paper discusses magnet arrangements and the shape of stationary gear teeth to improve transmission torque in surface magnet type magnetic gear transmission mechanisms.展开更多
The interconnection of polarization and phase in electromagnetic scattering process has attracted both fundamental and practical interest.Here we propose the principle and experimental demonstration of a scatteringcon...The interconnection of polarization and phase in electromagnetic scattering process has attracted both fundamental and practical interest.Here we propose the principle and experimental demonstration of a scatteringcontrol mechanism based on the simultaneous control of polarization and phase via a continuously shaped planar metasurface.Under circularly polarized illumination,the scattering is redirected to off-specular direction,leading to significant reduction of the scattering cross section.Theoretical investigation shows that the underlying physical mechanism is the spin-dependent phase modulation in the anisotropic scattering process.Our approach would provide valuable guidance for the full control of electromagnetic wave for diverse applications.展开更多
X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N^ +-ion-implanted TiNi alloy. There is a high nitr...X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N^ +-ion-implanted TiNi alloy. There is a high nitrogen content region at the outermost surface of the N^+-ion-implanted TiNi alloy. The detected nitrogen exists mainly in the form of TiN. Small amounts of Ti305 and TiO2 also exist on the surface of the N^+-ion-implanted TiNi sample. The modified layer of the N^+-ion-implanted sample can work as an obstacle layer of the nickel's dissolution, which obstructs Ni dissolving from the TiNi surface effectively.展开更多
The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosph...The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosphates ( hydroxyapatite ) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi, plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased ( p 〈 0.01 ). Whether the d/f- ferences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies has to be analyzed in further studies. Because of the cellular interactions with the coating layers, h is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself.展开更多
The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accura...The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.展开更多
In this study, a seismic analysis of semi-sine shaped alluvial hills above a circular underground cavity subjected to propagating oblique SH-waves using the half-plane time domain boundary element method(BEM) was carr...In this study, a seismic analysis of semi-sine shaped alluvial hills above a circular underground cavity subjected to propagating oblique SH-waves using the half-plane time domain boundary element method(BEM) was carried out. By dividing the problem into a pitted half-plane and an upper closed domain as an alluvial hill and applying continuity/boundary conditions at the interface, coupled equations were constructed and ultimately, the problem was solved step-by-step in the time domain to obtain the boundary values. After solving some verification examples, a semi-sine shaped alluvial hill located on an underground circular cavity was successfully analyzed to determine the amplification ratio of the hill surface. For sensitivity analysis, the effects of the impedance factor and shape ratio of the hill were also considered. The ground surface responses are illustrated as three-dimensional graphs in the time and frequency domains. The results show that the material properties of the hill and their heterogeneity with the underlying half-space had a significant effect on the surface response.展开更多
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by the National Key R&D Program of China(2018YFA0404702,2019YFA0708904,2021YFC2203501)Shanghai Key Laboratory of Space Navigation and Positioning Techniques,the National Natural Science Foundation of China(12273097,11903068).
文摘The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金Project(81170609)supported by the National Natural Science Foundation of ChinaProject(11JJ6087)supported by the Nature Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy,Central South University,China
文摘The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.
文摘人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。
基金financially supported by National Science and Technology Key Project Fund of China (Nos.2016YFC0801401 and 2016YFC0600708)Fundamental Research Funds for the Central Universities of China (No.2009QM01)Yue Qi Distinguished Scholar Project,China University of Mining & Technology,Beijing,China
文摘Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.
基金Supported by National Natural Science Foundation of China(Grant No.51175304)Shandong Provincial Science and Technology Development Plan of China(Grant No.2013GHZ30305)
文摘Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.
文摘The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.
基金supported by the Natural Science Foundation of China(Nos.11675148 and 11505157)the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province(No.2017GGJS008)+2 种基金the Foundation and Advanced Technology Research Program of Henan Province(No.162300410222)the Outstanding Young Talent Research Fund of Zhengzhou University(No.1521317002)the Physics Research and Development Program of Zhengzhou University(No.32410017)
文摘Systematic total Routhian surface calculations for even–even N = 104 midshell isotones with 66≤Z≤82 have been carried out based on a more realistic diffuse-surface deformed Woods–Saxon nuclear potential in (β_2, γ, β_4) deformation space, focusing on the rotation-induced shapecoexisting phenomena. As an example and basic test, the oblate property at the ground state in ^(184)Hg is well reproduced and the microscopic origin is analyzed from the single-particle structure. The present calculated results are compared with available experimental information, showing a good agreement. It is systematically found that in this isotonic chain several bands with different shapes(e.g., prolate, oblate and superdeformed prolate bands, seven non-collective band) may show a strong competition and coexisting phenomenon at a certain domain of the rotational frequency.
基金supported by National Natural Science Foundation of China (Grant No.50575098)
文摘Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been made in smooth join of non-trimmed surface patches, while there has been seldom research on smoothly stitching trimmed surface patches together. This paper studies the problem of global continuity adjustment, damaged hole repair and local shape optimization for complex trimmed surface model, and presents a uniform scheme to deal with continuity adjustment of trimmed surfaces and geometric repair of local broken region. Constrained B-spline surface refitting technique and trim calculation are first utilized to achieve global G^1 continuity, and then local shape optimization functional is adopted to reduce fitting error and improve local quality of refitted surface patch. The proposed approach is applied to a discontinuity ship hull surface model with an irregular hole, and the result demonstrates the validation of our method. Furthermore, on the premise of global continuity, the proposed locally repairing damaged surface model provides a better foundation for following research work, such as topology recovery technique for complex surface model after geometric repair.
基金supported by the National Natural Science Foundation of China (No.50971007)the Program for New Century Excellent Talents in Universities from the Ministry of Education of China (No.NCET-09-0024)
文摘A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.
基金This project is supported by National Natural Science Foundation of China(No.50575144).
文摘A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weld joint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.
文摘In mechanical gear systems, dust, noise, vibration, and tooth wear are generated by frictions among gear teeth, and suppressing friction requires lubrication. Magnetic gears transmit torque by magnetic forces without contact and so avoid contact-related problems. The present paper discusses magnet arrangements and the shape of stationary gear teeth to improve transmission torque in surface magnet type magnetic gear transmission mechanisms.
基金the China Triumph International Engineering Co. Ltd.(CTIEC),Shanghai,China,which offers generous financial support for this work
文摘The interconnection of polarization and phase in electromagnetic scattering process has attracted both fundamental and practical interest.Here we propose the principle and experimental demonstration of a scatteringcontrol mechanism based on the simultaneous control of polarization and phase via a continuously shaped planar metasurface.Under circularly polarized illumination,the scattering is redirected to off-specular direction,leading to significant reduction of the scattering cross section.Theoretical investigation shows that the underlying physical mechanism is the spin-dependent phase modulation in the anisotropic scattering process.Our approach would provide valuable guidance for the full control of electromagnetic wave for diverse applications.
文摘X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N^ +-ion-implanted TiNi alloy. There is a high nitrogen content region at the outermost surface of the N^+-ion-implanted TiNi alloy. The detected nitrogen exists mainly in the form of TiN. Small amounts of Ti305 and TiO2 also exist on the surface of the N^+-ion-implanted TiNi sample. The modified layer of the N^+-ion-implanted sample can work as an obstacle layer of the nickel's dissolution, which obstructs Ni dissolving from the TiNi surface effectively.
文摘The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosphates ( hydroxyapatite ) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi, plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased ( p 〈 0.01 ). Whether the d/f- ferences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies has to be analyzed in further studies. Because of the cellular interactions with the coating layers, h is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself.
基金supported by the National Natural Science Foundation of China(U1530103,11302219,and 11272308)
文摘The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.
文摘In this study, a seismic analysis of semi-sine shaped alluvial hills above a circular underground cavity subjected to propagating oblique SH-waves using the half-plane time domain boundary element method(BEM) was carried out. By dividing the problem into a pitted half-plane and an upper closed domain as an alluvial hill and applying continuity/boundary conditions at the interface, coupled equations were constructed and ultimately, the problem was solved step-by-step in the time domain to obtain the boundary values. After solving some verification examples, a semi-sine shaped alluvial hill located on an underground circular cavity was successfully analyzed to determine the amplification ratio of the hill surface. For sensitivity analysis, the effects of the impedance factor and shape ratio of the hill were also considered. The ground surface responses are illustrated as three-dimensional graphs in the time and frequency domains. The results show that the material properties of the hill and their heterogeneity with the underlying half-space had a significant effect on the surface response.