Through the comprehensive analysis of the connotation and logic,inheritance and innovation and the value of social governance,and the dialectical relationship of“two combination”,the inheritance of the idea of Marxi...Through the comprehensive analysis of the connotation and logic,inheritance and innovation and the value of social governance,and the dialectical relationship of“two combination”,the inheritance of the idea of Marxism,the inheritance of excellent traditional culture and the governance of contemporary society.展开更多
Relationship between sea level change and a single climate indicator has been widely discussed.However,few studies focused on the relationship between monthly mean sea level(MMSL)and several key impact factors,includi...Relationship between sea level change and a single climate indicator has been widely discussed.However,few studies focused on the relationship between monthly mean sea level(MMSL)and several key impact factors,including CO_(2) concentration,sea ice area,and sunspots,on various time scales.In addition,research on the independent relationship between climate factors and sea level on various time scales is lacking,especially when the dependence of climate factors on Nino 3.4 is excluded.Based on this,we use wavelet coherence(WC)and partial wavelet coherence(PWC)to establish a relationship between MMSL and its influencing factors.The WC results show that the influence of climate indices on MMSL has strong regional characteristics.The significant correlation between Southern Hemisphere sea ice area and MMSL is opposite to that between Northern Hemisphere sea ice area and MMSL.The PWC results show that after removing the influence of Nino 3.4,the significant coherent regions of the Pacific Decadal Oscillation(PDO),Dipole Mode Index(DMI),Atlantic Multidecadal Oscillation(AMO),and Southern Oscillation Index(SOI)decrease to varying degrees on different time scales in different regions,demonstrating the influence of Nino 3.4.Our work emphasizes the interrelationship and independent relationship between MMSL and its influencing factors on various time scales and the use of PWC and WC to describe this relationship.The study has an important reference significance for selecting the best predictors of sea level change or climate systems.展开更多
With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, ki...Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, kissing bonds are inconspicuous in ultrasonic C-scans. However, the determination of attributes in the time domain and the frequency domain of an ultrasound signal provides the opportunity to derive a pattern for bonded area. Deviations from the pattern found in inconspicuous bonding areas indicate kissing bonds. The survey described here deals with the manufacturing of adhesively joint samples that purposefully include kissing bonds, as well as potential solutions for detecting them through ultrasonic testing combined with pattern recognition. The properties of the epoxy-based adhesive were varied by changing the mixing ratios between resin and hardener. Samples with a mixing ratio far apart from the manufacturer’s recommendation with an inconspicuous appearance in a C-scan, but low shear strength values were taken for further evaluation. After a definition and learning phase, a 100 percent hit rate to separate good bondings from kissing bonds could be derived in a blind test. The discriminating feature found is due to the frequency shift between good and kissing bonds as well as the relative amplitude of the second peak.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and la...It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface展开更多
Recently,artificial-intelligence-based automatic customer response sys-tem has been widely used instead of customer service representatives.Therefore,it is important for automatic customer service to promptly recognize...Recently,artificial-intelligence-based automatic customer response sys-tem has been widely used instead of customer service representatives.Therefore,it is important for automatic customer service to promptly recognize emotions in a customer’s voice to provide the appropriate service accordingly.Therefore,we analyzed the performance of the emotion recognition(ER)accuracy as a function of the simulation time using the proposed chunk-based speech ER(CSER)model.The proposed CSER model divides voice signals into 3-s long chunks to effi-ciently recognize characteristically inherent emotions in the customer’s voice.We evaluated the performance of the ER of voice signal chunks by applying four RNN techniques—long short-term memory(LSTM),bidirectional-LSTM,gated recurrent units(GRU),and bidirectional-GRU—to the proposed CSER model individually to assess its ER accuracy and time efficiency.The results reveal that GRU shows the best time efficiency in recognizing emotions from speech signals in terms of accuracy as a function of simulation time.展开更多
Eliminating poverty is the essential requirement of socialism. Since the 18th National Congress of the Communist Party of China, targeted poverty alleviation has become a major strategy for poverty alleviation and dev...Eliminating poverty is the essential requirement of socialism. Since the 18th National Congress of the Communist Party of China, targeted poverty alleviation has become a major strategy for poverty alleviation and development in China. Xi Jinping s important exposition of poverty alleviation is the theoretical basis and practical guide to direct the effective implementation of China s targeted poverty alleviation strategy. It has gradually developed into an innovative theoretical system for poverty alleviation and development in the new era, with meticulous internal logic and a reputation for the significance of the times at home and abroad. Xi Jinping s thought of targeted poverty alleviation is the development and innovation of the theory and practice of poverty alleviation and development with Chinese characteristics. It is an important guarantee for China to win the battle to get rid of poverty and build a well-off society in an all-round way, and has contributed China s wisdom and China s plan to reducing poverty in the world.展开更多
Making events recognition more reliable under complex environment is one of the most important challenges for the intelligent recognition system to the ticket gate in the urban rapid rail transit. The motion objects p...Making events recognition more reliable under complex environment is one of the most important challenges for the intelligent recognition system to the ticket gate in the urban rapid rail transit. The motion objects passing through the ticket gate could be described as a series of moving sequences got by sensors that located in the walkway side of the ticket gate. This paper presents a robust method to detect some classes of events of ticket gate in the urban rapid rail transit. Diffused reflectance infrared sensors are used to collect signals. In this paper, the motion objects are here referred to passenger(s) or (and) luggage(s), for which are of frequent occurrences in the ticket gate of the urban railway traffic. Specifically, this paper makes two main contributions: 1) The proposed recognition method could be used to identify several events, including the event of one person passing through the ticket gate, the event of two consecutive passengers passing through the ticket gate without a big gap between them, and the event of a passenger walking through the ticket gate pulling a suitcase;2) The moving time sequence matrix is transformed into a one-dimensional vector as the feature descriptor. Deep learning (DL), back propagation neural network (BP), and support vector machine (SVM) are applied to recognize the events respectively. BP has been proved to have a higher recognition rate compared to other methods. In order to implement the three algorithms, a data set is built which includes 150 samples of all kinds of events from the practical tests. Experiments show the effectiveness of the proposed methods.展开更多
In a developing country, modernization and change of the accounting regime are possible if the standards are in compliance with global ones. The change of accounting standards adopted by Turkey started to be implement...In a developing country, modernization and change of the accounting regime are possible if the standards are in compliance with global ones. The change of accounting standards adopted by Turkey started to be implemented, and this created a number of qualitative and quantitative results. This study examines the impact of change of accounting standards on accounting quality. In order to determine how switching standard reflects accounting quality, first of all, the earnings management, timely loss recognition, and value relevance variables pertaining to accounting quality were listed and the findings were stated after subjecting the obtained data to statistical analyses. Accordingly, by the transition to International Financial Reporting Standards (IFRS), the earnings management practices were observed to decrease as compared with the pre-IFRS period and the timely loss recognition and value-relevance values were observed to increase, which constitute the dimensions of accounting quality. It was also concluded that by the switch from domestic accounting standards to International Accounting Standards (IAS), the quality of accounting in the country was improved and the market became more active than it was before.展开更多
This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class ta...This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class targets by a metallic wire example. A well-estimated depolarization degree requires a robust extraction of the fundamental target resonance set in two orthogonal sets of fully co-polarized and cross-polarized polarization channels, then finding the null polarization states using the Lagrangian method. Such depolarization degree per resonance mode has the potential to form a robust feature set because it is relatively less sensitive to onset ambiguity, invariant to rotation, and could create a compact, recognizable, and separable distribution in the proposed feature space. The study was limited to two targets with two swept changes of fifteen degrees within normal incidence;under a supervised learning approach, the results showed that the identification rate converging to upper-bound (100%) for a signal-to-noise ratio above 20 dB and lower-bound around (50%) below −10 dB.展开更多
Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical is...Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical issues especially for real time applications. Therefore, using Feature Selection (FS) with suitable machine learning technique for digit recognition contributes to facilitate solving the issues of time and memory by minimizing the number of features used to train the model. This paper examines various FS methods with several classification techniques using MNIST dataset. In addition, models of different algorithms (i.e. linear, non-linear, ensemble, and deep learning) are implemented and compared in order to study their suitability for digit recognition. The objective of this study is to identify a subset of relevant features that provides at least the same accuracy as the complete set of features in addition to reducing the required time, computational complexity, and required storage for digit recognition. The experimental results proved that 60% of the complete set of features reduces the training time up to third of the required time using the complete set of features. Moreover, the classifiers trained using the proposed subset achieve the same accuracy as the classifiers trained using the complete set of features.展开更多
Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount ...Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches.展开更多
Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India.The video obtained from such surveillance are of low quality.Still counting vehicles from such videos are necess...Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India.The video obtained from such surveillance are of low quality.Still counting vehicles from such videos are necessity to avoid traf-fic congestion and allows drivers to plan their routes more precisely.On the other hand,detecting vehicles from such low quality videos are highly challenging with vision based methodologies.In this research a meticulous attempt is made to access low-quality videos to describe traffic in Salem town in India,which is mostly an un-attempted entity by most available sources.In this work profound Detection Transformer(DETR)model is used for object(vehicle)detection.Here vehicles are anticipated in a rush-hour traffic video using a set of loss functions that carry out bipartite coordinating among estimated and information acquired on real attributes.Every frame in the traffic footage has its date and time which is detected and retrieved using Tesseract Optical Character Recognition.The date and time extricated and perceived from the input image are incorporated with the length of the recognized objects acquired from the DETR model.This furnishes the vehicles report with timestamp.Transformer Timeseries Prediction Model(TTPM)is proposed to predict the density of the vehicle for future prediction,here the regular NLP layers have been removed and the encoding temporal layer has been modified.The proposed TTPM error rate outperforms the existing models with RMSE of 4.313 and MAE of 3.812.展开更多
文摘Through the comprehensive analysis of the connotation and logic,inheritance and innovation and the value of social governance,and the dialectical relationship of“two combination”,the inheritance of the idea of Marxism,the inheritance of excellent traditional culture and the governance of contemporary society.
基金Supported by the National Key R&D Program of China (No.2021YFC3001000)the National Natural Science Foundation of China (Nos.U1911204,51861125203)。
文摘Relationship between sea level change and a single climate indicator has been widely discussed.However,few studies focused on the relationship between monthly mean sea level(MMSL)and several key impact factors,including CO_(2) concentration,sea ice area,and sunspots,on various time scales.In addition,research on the independent relationship between climate factors and sea level on various time scales is lacking,especially when the dependence of climate factors on Nino 3.4 is excluded.Based on this,we use wavelet coherence(WC)and partial wavelet coherence(PWC)to establish a relationship between MMSL and its influencing factors.The WC results show that the influence of climate indices on MMSL has strong regional characteristics.The significant correlation between Southern Hemisphere sea ice area and MMSL is opposite to that between Northern Hemisphere sea ice area and MMSL.The PWC results show that after removing the influence of Nino 3.4,the significant coherent regions of the Pacific Decadal Oscillation(PDO),Dipole Mode Index(DMI),Atlantic Multidecadal Oscillation(AMO),and Southern Oscillation Index(SOI)decrease to varying degrees on different time scales in different regions,demonstrating the influence of Nino 3.4.Our work emphasizes the interrelationship and independent relationship between MMSL and its influencing factors on various time scales and the use of PWC and WC to describe this relationship.The study has an important reference significance for selecting the best predictors of sea level change or climate systems.
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
文摘Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, kissing bonds are inconspicuous in ultrasonic C-scans. However, the determination of attributes in the time domain and the frequency domain of an ultrasound signal provides the opportunity to derive a pattern for bonded area. Deviations from the pattern found in inconspicuous bonding areas indicate kissing bonds. The survey described here deals with the manufacturing of adhesively joint samples that purposefully include kissing bonds, as well as potential solutions for detecting them through ultrasonic testing combined with pattern recognition. The properties of the epoxy-based adhesive were varied by changing the mixing ratios between resin and hardener. Samples with a mixing ratio far apart from the manufacturer’s recommendation with an inconspicuous appearance in a C-scan, but low shear strength values were taken for further evaluation. After a definition and learning phase, a 100 percent hit rate to separate good bondings from kissing bonds could be derived in a blind test. The discriminating feature found is due to the frequency shift between good and kissing bonds as well as the relative amplitude of the second peak.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金supported by the project ‘the Weather Cause of Formation for Blizzard Hazard in South China’ from the Ministry of ScienceTechnology National Technological Support Project (2008BAC48B02).
文摘It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface
基金supported by the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-004).
文摘Recently,artificial-intelligence-based automatic customer response sys-tem has been widely used instead of customer service representatives.Therefore,it is important for automatic customer service to promptly recognize emotions in a customer’s voice to provide the appropriate service accordingly.Therefore,we analyzed the performance of the emotion recognition(ER)accuracy as a function of the simulation time using the proposed chunk-based speech ER(CSER)model.The proposed CSER model divides voice signals into 3-s long chunks to effi-ciently recognize characteristically inherent emotions in the customer’s voice.We evaluated the performance of the ER of voice signal chunks by applying four RNN techniques—long short-term memory(LSTM),bidirectional-LSTM,gated recurrent units(GRU),and bidirectional-GRU—to the proposed CSER model individually to assess its ER accuracy and time efficiency.The results reveal that GRU shows the best time efficiency in recognizing emotions from speech signals in terms of accuracy as a function of simulation time.
基金Project Commissioned by the Office of Rural Work Leading Group of Kunming Municipal Party CommitteeConstruction Project of Studio for Party Branch Secretaries of"Double Leaders"Teachers in Colleges and Universities.
文摘Eliminating poverty is the essential requirement of socialism. Since the 18th National Congress of the Communist Party of China, targeted poverty alleviation has become a major strategy for poverty alleviation and development in China. Xi Jinping s important exposition of poverty alleviation is the theoretical basis and practical guide to direct the effective implementation of China s targeted poverty alleviation strategy. It has gradually developed into an innovative theoretical system for poverty alleviation and development in the new era, with meticulous internal logic and a reputation for the significance of the times at home and abroad. Xi Jinping s thought of targeted poverty alleviation is the development and innovation of the theory and practice of poverty alleviation and development with Chinese characteristics. It is an important guarantee for China to win the battle to get rid of poverty and build a well-off society in an all-round way, and has contributed China s wisdom and China s plan to reducing poverty in the world.
文摘Making events recognition more reliable under complex environment is one of the most important challenges for the intelligent recognition system to the ticket gate in the urban rapid rail transit. The motion objects passing through the ticket gate could be described as a series of moving sequences got by sensors that located in the walkway side of the ticket gate. This paper presents a robust method to detect some classes of events of ticket gate in the urban rapid rail transit. Diffused reflectance infrared sensors are used to collect signals. In this paper, the motion objects are here referred to passenger(s) or (and) luggage(s), for which are of frequent occurrences in the ticket gate of the urban railway traffic. Specifically, this paper makes two main contributions: 1) The proposed recognition method could be used to identify several events, including the event of one person passing through the ticket gate, the event of two consecutive passengers passing through the ticket gate without a big gap between them, and the event of a passenger walking through the ticket gate pulling a suitcase;2) The moving time sequence matrix is transformed into a one-dimensional vector as the feature descriptor. Deep learning (DL), back propagation neural network (BP), and support vector machine (SVM) are applied to recognize the events respectively. BP has been proved to have a higher recognition rate compared to other methods. In order to implement the three algorithms, a data set is built which includes 150 samples of all kinds of events from the practical tests. Experiments show the effectiveness of the proposed methods.
文摘In a developing country, modernization and change of the accounting regime are possible if the standards are in compliance with global ones. The change of accounting standards adopted by Turkey started to be implemented, and this created a number of qualitative and quantitative results. This study examines the impact of change of accounting standards on accounting quality. In order to determine how switching standard reflects accounting quality, first of all, the earnings management, timely loss recognition, and value relevance variables pertaining to accounting quality were listed and the findings were stated after subjecting the obtained data to statistical analyses. Accordingly, by the transition to International Financial Reporting Standards (IFRS), the earnings management practices were observed to decrease as compared with the pre-IFRS period and the timely loss recognition and value-relevance values were observed to increase, which constitute the dimensions of accounting quality. It was also concluded that by the switch from domestic accounting standards to International Accounting Standards (IAS), the quality of accounting in the country was improved and the market became more active than it was before.
文摘This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class targets by a metallic wire example. A well-estimated depolarization degree requires a robust extraction of the fundamental target resonance set in two orthogonal sets of fully co-polarized and cross-polarized polarization channels, then finding the null polarization states using the Lagrangian method. Such depolarization degree per resonance mode has the potential to form a robust feature set because it is relatively less sensitive to onset ambiguity, invariant to rotation, and could create a compact, recognizable, and separable distribution in the proposed feature space. The study was limited to two targets with two swept changes of fifteen degrees within normal incidence;under a supervised learning approach, the results showed that the identification rate converging to upper-bound (100%) for a signal-to-noise ratio above 20 dB and lower-bound around (50%) below −10 dB.
文摘Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical issues especially for real time applications. Therefore, using Feature Selection (FS) with suitable machine learning technique for digit recognition contributes to facilitate solving the issues of time and memory by minimizing the number of features used to train the model. This paper examines various FS methods with several classification techniques using MNIST dataset. In addition, models of different algorithms (i.e. linear, non-linear, ensemble, and deep learning) are implemented and compared in order to study their suitability for digit recognition. The objective of this study is to identify a subset of relevant features that provides at least the same accuracy as the complete set of features in addition to reducing the required time, computational complexity, and required storage for digit recognition. The experimental results proved that 60% of the complete set of features reduces the training time up to third of the required time using the complete set of features. Moreover, the classifiers trained using the proposed subset achieve the same accuracy as the classifiers trained using the complete set of features.
文摘Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches.
文摘Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India.The video obtained from such surveillance are of low quality.Still counting vehicles from such videos are necessity to avoid traf-fic congestion and allows drivers to plan their routes more precisely.On the other hand,detecting vehicles from such low quality videos are highly challenging with vision based methodologies.In this research a meticulous attempt is made to access low-quality videos to describe traffic in Salem town in India,which is mostly an un-attempted entity by most available sources.In this work profound Detection Transformer(DETR)model is used for object(vehicle)detection.Here vehicles are anticipated in a rush-hour traffic video using a set of loss functions that carry out bipartite coordinating among estimated and information acquired on real attributes.Every frame in the traffic footage has its date and time which is detected and retrieved using Tesseract Optical Character Recognition.The date and time extricated and perceived from the input image are incorporated with the length of the recognized objects acquired from the DETR model.This furnishes the vehicles report with timestamp.Transformer Timeseries Prediction Model(TTPM)is proposed to predict the density of the vehicle for future prediction,here the regular NLP layers have been removed and the encoding temporal layer has been modified.The proposed TTPM error rate outperforms the existing models with RMSE of 4.313 and MAE of 3.812.