The axisymmetric vortex sheet model developed by Nitsche and Krasny had been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model wer...The axisymmetric vortex sheet model developed by Nitsche and Krasny had been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model were in good agreement with the experiments (Didden (1979) for circular tube and Auerbach (1987) for 2D tube and opening). Using this new model, evidences are provided to show that the main failure of the similarity theory (the false prediction of axial trajectory of vortex ring) is due to its ignorance of the self-induced ring velocity (mutual induction for vortex pair). The Glezer (1988)'s summary on the influence of piston speed upon the shedding circulation was also discussed, and finally the variation of core distribution of vortex ring with turning angle and piston speed was given. (Edited author abstract) 22 Refs.展开更多
基金The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education
文摘The axisymmetric vortex sheet model developed by Nitsche and Krasny had been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model were in good agreement with the experiments (Didden (1979) for circular tube and Auerbach (1987) for 2D tube and opening). Using this new model, evidences are provided to show that the main failure of the similarity theory (the false prediction of axial trajectory of vortex ring) is due to its ignorance of the self-induced ring velocity (mutual induction for vortex pair). The Glezer (1988)'s summary on the influence of piston speed upon the shedding circulation was also discussed, and finally the variation of core distribution of vortex ring with turning angle and piston speed was given. (Edited author abstract) 22 Refs.