The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of eco...The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.展开更多
Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited ...Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.展开更多
This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in ...This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.展开更多
Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this stud...Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this study,we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region,China from 1975 to 2018.During the study period,LUCC in the study region varied significantly.Except grassland and unused land,all the other land use/cover types(cultivated land,forestland,waterbody,and construction land)increased in areas.From 1975 to 2018,the spatial-temporal variations in ESV were also pronounced.The total ESV decreased by 4.00×10^(8) CNY,which was primarily due to the reductions in the areas of grassland and unused land.Waterbody had a much higher ESV than the other land use/cover types.Ultimately,understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.展开更多
The Yushugou HP granulite-peridotite complex is located at east of northern margin of southern Tianshan mountains,China,which consists of granulite unit and peridotite unit mainly.Because of the rare association of
Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite an...Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.展开更多
The Yushugou terrain of high\|pressure granulite facies in southern Tianshan Mountain is composed mainly of an ophiolite suite. Most selected zircons are round or elliptical in shape, and some are of tetragonal prism ...The Yushugou terrain of high\|pressure granulite facies in southern Tianshan Mountain is composed mainly of an ophiolite suite. Most selected zircons are round or elliptical in shape, and some are of tetragonal prism with round edges. The granulometric analyses show that they are well sorted in sedimentation. ZrO\-2/HfO\-2 ratios in zircons range from 45 to 57. These characters, together with the petrologic and geochemical characters of plagioclase\|garnet\|orthopyroxenite bearing zircons, indicate that the protolith of plagioclase\|garnet\|orthopyroxenite may be derived mainly from volcanic base surge sedimentary debris in oceanic islands and from clays formed by seafloor weathering. Zircons are simply of pyroclastic debris. The ophiolite formation age of (440±18) Ma and the first\|stage metamorphic age (amphibolite or granulite facies) of (364±5) Ma were obtained with a method of multiple grains in different groups and a method of concordia plot. These ages provide important information on the temporal and spatial occurrence of southern Paleozoic Tianshan Ocean, the subduction rate of the oceanic crust and the formation mechanism of ophiolite of granulite facies.展开更多
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the spac...Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the space distribution characteristics of snow line and its influencing factors. The results show that the snowline distribution of southern and northern slopes of the Tianshan Mountains is that it is high in the south and east but low in north and west; the snowline of southern slope is sparse and there is a small spatial gradient change; the snow line is dense in the middle of northern slope,and the spatial gradient change is not large. Through the analysis of the whole study area,it is found that the correlation coefficient between snow line altitude and temperature is 0. 159,and the partial correlation coefficient between them is- 0. 212; the correlation coefficient between snow line altitude and precipitation is- 0. 668,and the partial correlation coefficient between them is- 0. 676. Precipitation is the dominant factor that affects the distribution of snow line of southern and northern slopes of the Tianshan Mountains.展开更多
The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is...The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.展开更多
Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best ...Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.展开更多
Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechani...Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.展开更多
As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominan...As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominant tree species of mountainous conifer forests on the northern slope of Tianshan Mountains in Xinjiang, the distribution of Picea schrenkiana and its population size are sensitive to climatic change. The typical natural profile of Huashuwozi and the nearby Xiaoxigou archaeologi-cal profile, located in Quanzijie Township, Jimusaer County in Xinjiang, were chosen to analyze and compare the relative high-resolution pollen records, and to measure 14C dating and SEM (scanning elec-tron microscope) microstructure for charcoal frag-ments contained in Xiaoxigou profile’s cultural layers. The results show that in these two profiles, the high percentages of Picea (more than 20% and 35%, re-spectively) appeared in the stratum of the same pe-riod (2000-1300 a BP), which corresponds to the charcoal fragment’s age of Picea schrenkiana con-tained in Xiaoxigou cultural layers. These results convincingly revealed that during the period of 2000-1300 a BP, the timberline for Picea schrenkiana on the northern slope of Tianshan Mountains in Xinjiang declined by about 330m compared with the present.展开更多
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021xjkk0905).
文摘The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.
基金National Basic Research Program of China, No.2009CB825105National Natural Science Foundation of China, No.40671015
文摘Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.
基金funded by one of National Basic Research Program of China (Grant No.2009CB825105)the National Natural Science Foundation of China (Grant No.40671015)
文摘This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.
基金This research was funded by the Pan-Third-Polar Environmental Change and the Construction of the Green Silk Road,and the Science and Technology Special Project of the Chinese Academy of Sciences(XDA20040400).
文摘Land use/cover change(LUCC)is becoming more and more frequent and extensive as a result of human activities,and is expected to have a major impact on human welfare by altering ecosystem service value(ESV).In this study,we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region,China from 1975 to 2018.During the study period,LUCC in the study region varied significantly.Except grassland and unused land,all the other land use/cover types(cultivated land,forestland,waterbody,and construction land)increased in areas.From 1975 to 2018,the spatial-temporal variations in ESV were also pronounced.The total ESV decreased by 4.00×10^(8) CNY,which was primarily due to the reductions in the areas of grassland and unused land.Waterbody had a much higher ESV than the other land use/cover types.Ultimately,understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.
文摘The Yushugou HP granulite-peridotite complex is located at east of northern margin of southern Tianshan mountains,China,which consists of granulite unit and peridotite unit mainly.Because of the rare association of
基金sponsored by the China Geological Survey(grants No.1212011120335 and 12120114006201)
文摘Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.
文摘The Yushugou terrain of high\|pressure granulite facies in southern Tianshan Mountain is composed mainly of an ophiolite suite. Most selected zircons are round or elliptical in shape, and some are of tetragonal prism with round edges. The granulometric analyses show that they are well sorted in sedimentation. ZrO\-2/HfO\-2 ratios in zircons range from 45 to 57. These characters, together with the petrologic and geochemical characters of plagioclase\|garnet\|orthopyroxenite bearing zircons, indicate that the protolith of plagioclase\|garnet\|orthopyroxenite may be derived mainly from volcanic base surge sedimentary debris in oceanic islands and from clays formed by seafloor weathering. Zircons are simply of pyroclastic debris. The ophiolite formation age of (440±18) Ma and the first\|stage metamorphic age (amphibolite or granulite facies) of (364±5) Ma were obtained with a method of multiple grains in different groups and a method of concordia plot. These ages provide important information on the temporal and spatial occurrence of southern Paleozoic Tianshan Ocean, the subduction rate of the oceanic crust and the formation mechanism of ophiolite of granulite facies.
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金Supported by Scientific and Technological Support Project for Xinjiang Autonomous Region(2013911104)
文摘Using MOD10A1,temperature and precipitation of 21 meteorological observatories and HJ-1 / CCD data from July to September during 2002- 2013,this paper takes the Tianshan Mountains as the study area to analyze the space distribution characteristics of snow line and its influencing factors. The results show that the snowline distribution of southern and northern slopes of the Tianshan Mountains is that it is high in the south and east but low in north and west; the snowline of southern slope is sparse and there is a small spatial gradient change; the snow line is dense in the middle of northern slope,and the spatial gradient change is not large. Through the analysis of the whole study area,it is found that the correlation coefficient between snow line altitude and temperature is 0. 159,and the partial correlation coefficient between them is- 0. 212; the correlation coefficient between snow line altitude and precipitation is- 0. 668,and the partial correlation coefficient between them is- 0. 676. Precipitation is the dominant factor that affects the distribution of snow line of southern and northern slopes of the Tianshan Mountains.
基金the important orientation program of the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-327).
文摘The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.
基金funded by Xinjiang Science and Technology Commission(980103002)by the National Key Project for Basic Research(G199043501)+1 种基金by the foundation of the open laboratory of National Climate Center,China Meteorological Administrationby the foundation of Observation and Experiment Station of Tianshan Mountain Glacier,Chinese Academy of Seienecs.
文摘Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.
基金National Natural Science Foundation of China(41461086)National Natural Science Foundation of China(41761108)。
文摘Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.
基金supported by the National Natural Science Foundation of China(Grant No.90102009)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry,the Innovation Project of the Chinese Academy of Sciences(Grant No.KZCXI-10-05)973 project(Grant No.G1999043502).
文摘As a good indicator of Holocene climate, the fluctuation of alpine timberline is a synthetical result of impacts of many environmental factors dur-ing geological and historical periods and modern times. As the dominant tree species of mountainous conifer forests on the northern slope of Tianshan Mountains in Xinjiang, the distribution of Picea schrenkiana and its population size are sensitive to climatic change. The typical natural profile of Huashuwozi and the nearby Xiaoxigou archaeologi-cal profile, located in Quanzijie Township, Jimusaer County in Xinjiang, were chosen to analyze and compare the relative high-resolution pollen records, and to measure 14C dating and SEM (scanning elec-tron microscope) microstructure for charcoal frag-ments contained in Xiaoxigou profile’s cultural layers. The results show that in these two profiles, the high percentages of Picea (more than 20% and 35%, re-spectively) appeared in the stratum of the same pe-riod (2000-1300 a BP), which corresponds to the charcoal fragment’s age of Picea schrenkiana con-tained in Xiaoxigou cultural layers. These results convincingly revealed that during the period of 2000-1300 a BP, the timberline for Picea schrenkiana on the northern slope of Tianshan Mountains in Xinjiang declined by about 330m compared with the present.