In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron cur...A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.展开更多
A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the cl...A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the classical WENO schemes(Jiang and Shu in J Comput Phys,126:202-228,1996)might suffer from slight post-shock oscillations(which are responsible for the residue to hang at a truncation error level),this new type of high-order finite-difference and finite-volume multi-resolution WENO schemes is applied to control the slight post-shock oscillations and push the residue to settle down to machine zero in steady-state simulations.This new type of multi-resolution WENO schemes uses the same large stencils as that of the same order classical WENO schemes,could obtain fifth-order,seventh-order,and ninth-order in smooth regions,and could gradually degrade to first-order so as to suppress spurious oscillations near strong discontinuities.The linear weights of such new multi-resolution WENO schemes can be any positive numbers on the condition that their sum is one.This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finitedifference and finite-volume WENO schemes for solving steady-state problems.In comparison with the classical fifth-order finite-difference and finite-volume WENO schemes,the residue of these new high-order multi-resolution WENO schemes can converge to a tiny number close to machine zero for some benchmark steady-state problems.展开更多
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the...The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid.展开更多
One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one pred...One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one predator two prey system. Under this condition we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem, discuss the positive stable solution problem bifurcated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.展开更多
The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak ...The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of cationic surfactant and cetyltrimethyl ammonium bromide (CTAB) appeared at 206 nm and took a red shift from 206 nm to 221 nm with the increase of 4-ASA concentrations from 0.8×10-5 to 4.4×10-4 mol/L.Similarly,the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of nonionic surfactant and polyvinylpyrrolidone (PVP) appeared at 206 nm and took a red shift from 206 nm to 219 nm with the increase of 4-ASA concentrations from 0.8×10-5 to 4.4×10-4 mol/L.However,the similar phenomena did not appeared in the presence of anion surfactant,sodium dodecyl sulfate (SDS),the UV-vis spectra of 4-ASA aqueous solution remained the same peak position and the peak value increased with the 4-ASA concentration increase.The results could be attributed to the electrostatic attraction between 4-ASA and CTAB or PVP,as well as the electrostatic repulsion between 4-ASA and SDS.Furthermore,the value of critical micelle concentration (CMC) of surfactants in the presence of 4-ASA was determined with Fluorescence method.The first and second CMC of CTAB was 1.2×10-4 M and 2.4×10-4 M,respectively.The first and second CMC of PVP was 1.2×10-4 M and 2.8×10-4 M.SDS realized the multiple micellizations to form multiple CMC.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with...The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
基金the Educational Department of Hubei province(Q200628002)the National Science Foundation of China(10701057)
文摘A one-dimensional stationary nonisentropic hydrodynamic model for semiconductor devices with non-constant lattice temperature is studied. This model consists of the equations for the electron density, the electron current density and electron temperature, coupled with the Poisson equation of the electrostatic potential in a bounded interval supplemented with proper boundary conditions. The existence and uniqueness of a strong subsonic steady-state solution with positive particle density and positive temperature is established. The proof is based on the fixed-point arguments, the Stampacchia truncation methods, and the basic energy estimates.
基金supported by the National Natural Science Foundation of China(Grant No.11872210)supported by the National Science Foundation(Grant No.DMS-1719410)
文摘A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the classical WENO schemes(Jiang and Shu in J Comput Phys,126:202-228,1996)might suffer from slight post-shock oscillations(which are responsible for the residue to hang at a truncation error level),this new type of high-order finite-difference and finite-volume multi-resolution WENO schemes is applied to control the slight post-shock oscillations and push the residue to settle down to machine zero in steady-state simulations.This new type of multi-resolution WENO schemes uses the same large stencils as that of the same order classical WENO schemes,could obtain fifth-order,seventh-order,and ninth-order in smooth regions,and could gradually degrade to first-order so as to suppress spurious oscillations near strong discontinuities.The linear weights of such new multi-resolution WENO schemes can be any positive numbers on the condition that their sum is one.This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finitedifference and finite-volume WENO schemes for solving steady-state problems.In comparison with the classical fifth-order finite-difference and finite-volume WENO schemes,the residue of these new high-order multi-resolution WENO schemes can converge to a tiny number close to machine zero for some benchmark steady-state problems.
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB605205)the National Natural Science Foundation of China (Grant No. 10672019)
文摘The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid.
基金This work is supported by National Science Foundation of China and the Fundes of Institute of Math (opened) Academic Sinica.
文摘One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one predator two prey system. Under this condition we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem, discuss the positive stable solution problem bifurcated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.
基金Funded by the Foundation of Key Laboratory of Cellulose and Lignocellulosics Chemistry,Guangzhou Institute of Chemistry,Chinese Academy of Sciences (No.LCLC-2010-08)
文摘The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of cationic surfactant and cetyltrimethyl ammonium bromide (CTAB) appeared at 206 nm and took a red shift from 206 nm to 221 nm with the increase of 4-ASA concentrations from 0.8×10-5 to 4.4×10-4 mol/L.Similarly,the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of nonionic surfactant and polyvinylpyrrolidone (PVP) appeared at 206 nm and took a red shift from 206 nm to 219 nm with the increase of 4-ASA concentrations from 0.8×10-5 to 4.4×10-4 mol/L.However,the similar phenomena did not appeared in the presence of anion surfactant,sodium dodecyl sulfate (SDS),the UV-vis spectra of 4-ASA aqueous solution remained the same peak position and the peak value increased with the 4-ASA concentration increase.The results could be attributed to the electrostatic attraction between 4-ASA and CTAB or PVP,as well as the electrostatic repulsion between 4-ASA and SDS.Furthermore,the value of critical micelle concentration (CMC) of surfactants in the presence of 4-ASA was determined with Fluorescence method.The first and second CMC of CTAB was 1.2×10-4 M and 2.4×10-4 M,respectively.The first and second CMC of PVP was 1.2×10-4 M and 2.8×10-4 M.SDS realized the multiple micellizations to form multiple CMC.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.