In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker...This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.展开更多
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ...The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.展开更多
The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extrem...The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph...Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.展开更多
Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope...Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.展开更多
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the v...We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.展开更多
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi...In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.展开更多
In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6...In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium(Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K(Hex= 3.19 kOe,-Jiec= 1.97 erg/cm~2 for tRu=0.6 nm, the unit 1 Oe = 79.5775 A·m-1), which was higher than the previous studies.展开更多
The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structure...The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.展开更多
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ...Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.展开更多
We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splittin...We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction.展开更多
Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape...Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.展开更多
We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111...We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111) substrate is variable in different regions, giving rise to notable effects in experiments. This evidence of decoupling or variable interaction of silicene with the substrate is helpful to in-depth understanding of the structure and clectronic properties of silieene.展开更多
We present a study of electrical and thermal transport in Weyl semimetal WTe_(2)down to 0.3 K.The Wiedemann-Franz law holds below 2 K and a downward deviation starts above.The deviation is more pronounced in cleaner s...We present a study of electrical and thermal transport in Weyl semimetal WTe_(2)down to 0.3 K.The Wiedemann-Franz law holds below 2 K and a downward deviation starts above.The deviation is more pronounced in cleaner samples,as expected in the hydrodynamic picture of electronic transport,where a fraction of electron-electron collisions conserve momentum.Phonons are the dominant heat carriers and their mean-free-path does not display a Knudsen minimum.This is presumably a consequence of weak anharmonicity,as indicated by the temperature dependence of the specific heat.Frequent momentum exchange between phonons and electrons leads to quantum oscillations of the phononic thermal conductivity.Bloch-Grüneisen picture of electron-phonon scattering breaks down at low temperature when Umklapp ph-ph collisions cease to be a sink for electronic flow of momentum.Comparison with semi-metallic Sb shows that normal ph-ph collisions are amplified by anharmonicity.In both semimetals,at cryogenic temperature,e-ph collisions degrade the phononic flow of energy but not the electronic flow of momentum.展开更多
Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheolo...Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheological properties.Then,the concept and the calculation procedure of the safety factor are established at different time.Making use of finite element software ANSYS,the most dangerous sliding surface of the slope can be obtained through the strength reduction technique.According to the dynamic safety factor based on rheological mechanism,a good forecasting could be presented to prevent and cure the landslide.The result shows that the couple analysis reveals the process of the slope failure with the time and the important influence on the long-term stability due to the rheological parameters.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(M...The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(MRDS)test can be used to measure the residual shear strength of soils in a laboratory setting.However,modelling and simulation generally require advanced numerical methods to accommodate the large shear strains concentrated in the shear plane.In reality,when the standard direct shear(DS)apparatus is used,the MRDS method is prone to two major sources of measurement error:load cap tilting and specimen loss.These sources of error make it difficult or even impossible to correctly determine the residual shear strength.This paper presents a modified DS apparatus and multi-reversal multi-stage test method,simulated using the coupled Eulerian-Lagrangian(CEL)method in a finite element environment.The method was successful in evaluating equipment and preventing both load cap tilting and specimen loss,while modelling large-deformation behaviour that is not readily simulated with the conventional FEM or arbitrary Lagrangian-Eulerian(ALE)analysis.Thereafter,a modified DS apparatus was created for the purpose of analysing mixtures of organic materials found in an Australian clay.The results obtained from the modified DS CEL model in combination with laboratory tests show a great improvement in the measured residual shear strength profiles compared to those from the standard apparatus.The modified DS setup ensures that accurate material residual shear strengths are calculated,a factor that is vital to ensure appropriate soil behaviour is simulated for numerical analyses of large-scale geotechnical projects.展开更多
The influence of the electron-LO-phonon coupling on energy spectrum of the low-lying states ofan exciton inparabolic quantum dots is investigated as a function of dot size. Calculations are made by using the method of...The influence of the electron-LO-phonon coupling on energy spectrum of the low-lying states ofan exciton inparabolic quantum dots is investigated as a function of dot size. Calculations are made by using the method of few-bodyphysics within the effective-mass approximation. A considerable decrease of the energy in the stronger confinement rangeis found for the low-lying states of an exciton in quantum dots, which results from the confinement of electron-phononcoupling.展开更多
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
基金supported by the National Natural Science Foundation of China(U21A20331,81903743,22005322,22279151,and 22275004)National Science Fund for Distinguished Young Scholars(21925506).
文摘This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
基金This work was supported by Natural Science Foundation of China(Grant No.52278333)the Fundamental Research Funds for the Central Universities(Grant No.N2101021)The work is under the framework of the 111 Project(Grant No.B17009)and Sino-Franco Joint Research Laboratory on Multiphysics and Multiscale Rock Mechanics.
文摘The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Nos.D5000230066 and D5000210117)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2022JQ-358)。
文摘The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50730006,50976053,and 50906042)
文摘Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.
基金the Fundamental Research Funds for the Central Universities,China(Grant No.B210203032)the National Natural Science Foundation of China(Grant No.52279097)the Green and Blue Project of Jiangsu Province,China.
文摘Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.
基金National Natural Science Foundation of China under Grant Nos.70571017 and 10647001Natural Science Foundation of Guangxi Province under Grant No,0728042
文摘We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.
基金Project supported by the Key Program of the National Natural Science of China(Grant No.11232009)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium(Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K(Hex= 3.19 kOe,-Jiec= 1.97 erg/cm~2 for tRu=0.6 nm, the unit 1 Oe = 79.5775 A·m-1), which was higher than the previous studies.
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CB921602 and 2011CB606405)the National Natural Science Foundation of China(Grant Nos.91221205 and 11174168)
文摘The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.
基金the National Natural Science Foundation of China(10072005)Beijing Educational Committee(99LG-11)Beijing Natural Science(3002002)Foundation
文摘Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.
基金Supported by the National Basic Research Program of China under Grant No 2011CB921601the National Natural Science Foundation of China under Grant Nos 11234008,11361161002 and 11222430the Program for Sanjin Scholars of Shanxi Province
文摘We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00112 and 2012CB921701)
文摘Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921703 and 2013CB921702the National Natural Science Foundation of China under Grant Nos 11334011 and 91121003the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07000000
文摘We perform a scanning tunneling microscopy and spectroscopy study on the electronic structures of √3×√3- silicene on Ag(111). It is found that the coupling strength of √3×√3-silicene with the Ag-(111) substrate is variable in different regions, giving rise to notable effects in experiments. This evidence of decoupling or variable interaction of silicene with the substrate is helpful to in-depth understanding of the structure and clectronic properties of silieene.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1403500)the National Science Foundation of China(Grant Nos.12004123,51861135104,and 11574097)+3 种基金the Fundamental Research Funds for the Central Universities(Grant No.2019kfy XMBZ071)supported by the Agence Nationale de la Recherche(Grant No.ANR-19-CE30-0014-04)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200143)the China Postdoctoral Science Foundation(Grant No.2020M682386)。
文摘We present a study of electrical and thermal transport in Weyl semimetal WTe_(2)down to 0.3 K.The Wiedemann-Franz law holds below 2 K and a downward deviation starts above.The deviation is more pronounced in cleaner samples,as expected in the hydrodynamic picture of electronic transport,where a fraction of electron-electron collisions conserve momentum.Phonons are the dominant heat carriers and their mean-free-path does not display a Knudsen minimum.This is presumably a consequence of weak anharmonicity,as indicated by the temperature dependence of the specific heat.Frequent momentum exchange between phonons and electrons leads to quantum oscillations of the phononic thermal conductivity.Bloch-Grüneisen picture of electron-phonon scattering breaks down at low temperature when Umklapp ph-ph collisions cease to be a sink for electronic flow of momentum.Comparison with semi-metallic Sb shows that normal ph-ph collisions are amplified by anharmonicity.In both semimetals,at cryogenic temperature,e-ph collisions degrade the phononic flow of energy but not the electronic flow of momentum.
文摘Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheological properties.Then,the concept and the calculation procedure of the safety factor are established at different time.Making use of finite element software ANSYS,the most dangerous sliding surface of the slope can be obtained through the strength reduction technique.According to the dynamic safety factor based on rheological mechanism,a good forecasting could be presented to prevent and cure the landslide.The result shows that the couple analysis reveals the process of the slope failure with the time and the important influence on the long-term stability due to the rheological parameters.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
文摘The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(MRDS)test can be used to measure the residual shear strength of soils in a laboratory setting.However,modelling and simulation generally require advanced numerical methods to accommodate the large shear strains concentrated in the shear plane.In reality,when the standard direct shear(DS)apparatus is used,the MRDS method is prone to two major sources of measurement error:load cap tilting and specimen loss.These sources of error make it difficult or even impossible to correctly determine the residual shear strength.This paper presents a modified DS apparatus and multi-reversal multi-stage test method,simulated using the coupled Eulerian-Lagrangian(CEL)method in a finite element environment.The method was successful in evaluating equipment and preventing both load cap tilting and specimen loss,while modelling large-deformation behaviour that is not readily simulated with the conventional FEM or arbitrary Lagrangian-Eulerian(ALE)analysis.Thereafter,a modified DS apparatus was created for the purpose of analysing mixtures of organic materials found in an Australian clay.The results obtained from the modified DS CEL model in combination with laboratory tests show a great improvement in the measured residual shear strength profiles compared to those from the standard apparatus.The modified DS setup ensures that accurate material residual shear strengths are calculated,a factor that is vital to ensure appropriate soil behaviour is simulated for numerical analyses of large-scale geotechnical projects.
基金The project supported by National Natural Science Foundation of China under Grant No. 19975013
文摘The influence of the electron-LO-phonon coupling on energy spectrum of the low-lying states ofan exciton inparabolic quantum dots is investigated as a function of dot size. Calculations are made by using the method of few-bodyphysics within the effective-mass approximation. A considerable decrease of the energy in the stronger confinement rangeis found for the low-lying states of an exciton in quantum dots, which results from the confinement of electron-phononcoupling.