Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy dens...Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020 T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(No.17PTSYJC00040 and18PTSYJC00180)for their financial support。
文摘Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.