In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri...In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.展开更多
Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hilde...Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.展开更多
Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is inv...Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].展开更多
In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang...In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.展开更多
In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the c...In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].展开更多
In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The resul...In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.展开更多
Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r...Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.展开更多
In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑...In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.展开更多
By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively depe...By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).展开更多
In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed...In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed the implication of the conditions in previous papers.Then we apply these consequences to B-valued random variables,and greatly improve the original results of the strong convergence of the general Jamison weighted sum.Furthermore,our discussions are useful to the corresponding questions of real-valued random variables.展开更多
We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certai...We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certain case; other bounds improve the inequalities of Bennett and Hoeffding by adding missing factors in the spirit of Talagrand(1995). We also complete Talagrand's inequality by giving a lower bound of the same form, leading to an equality. As a consequence, we obtain large deviation expansions similar to those of Cram′er(1938),Bahadur-Rao(1960) and Sakhanenko(1991). We also show that our bound can be used to improve a recent inequality of Pinelis(2014).展开更多
RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<su...RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<sub>i</sub>}.In this letter, let {X<sub>i</sub>} be a standard normal sequence of random variables with zero meanand unit variance and write r<sub>ij</sub>=cov(X<sub>i</sub>, X<sub>j</sub>).展开更多
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergenc...For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.展开更多
The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent...The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent sequence case.展开更多
This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for wei...This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.展开更多
In this paper we obtain theorems of complete convergence for weighted sums of arrays of rowwise negatively associated (NA) random variables. These results improve and extend the corresponding results obtained by Su...In this paper we obtain theorems of complete convergence for weighted sums of arrays of rowwise negatively associated (NA) random variables. These results improve and extend the corresponding results obtained by Sung (2007), Wang et al. (1998) and Li et al. (1995) in independent sequence case.展开更多
Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As ...Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.展开更多
We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko...We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko(1991). In particular, our results extend Talagrand's inequality from bounded random variables to random variables having finite(2 + δ)-th moments, where δ∈(0, 1]. As a consequence,we obtain an improvement of Hoeffding's inequality. Applications to linear regression, self-normalized large deviations and t-statistic are also discussed.展开更多
基金National Natural Science Foundation of China (Grant Nos.12061028, 71871046)Support Program of the Guangxi China Science Foundation (Grant No.2018GXNSFAA281011)。
文摘In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.
文摘Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.
文摘Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].
基金Foundation item: Supported by the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China(12YJCZH217) Supported by the Natural Science Foundation of Anhui Province(1308085MA03) Supported by the Key Natural Science Foundation of Educational Committe of Anhui Province(KJ2014A255)
文摘In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.
文摘In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].
基金Supported by the National Science Foundation of China(10661006)Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.
基金Supported by the National Natural Science Foundation of China (60874004)
文摘Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.
文摘In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.
基金The NSF(11271020 and 11201004)of Chinathe NSF(10040606Q30 and 1208085MA11)of Anhui Provincethe NSF(KJ2012ZD01)of Education Department of Anhui Province
文摘By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).
基金Research supported by National Science Foundation of China(No.10071081)special financial support of Chinese Academy of Sciences
文摘In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed the implication of the conditions in previous papers.Then we apply these consequences to B-valued random variables,and greatly improve the original results of the strong convergence of the general Jamison weighted sum.Furthermore,our discussions are useful to the corresponding questions of real-valued random variables.
基金supported by the Post-Graduate Study Abroad Program sponsored by China Scholarship CouncilNational Natural Science Foundation of China(Grant Nos.11171044 and11401590)
文摘We show sharp bounds for probabilities of large deviations for sums of independent random variables satisfying Bernstein's condition. One such bound is very close to the tail of the standard Gaussian law in certain case; other bounds improve the inequalities of Bennett and Hoeffding by adding missing factors in the spirit of Talagrand(1995). We also complete Talagrand's inequality by giving a lower bound of the same form, leading to an equality. As a consequence, we obtain large deviation expansions similar to those of Cram′er(1938),Bahadur-Rao(1960) and Sakhanenko(1991). We also show that our bound can be used to improve a recent inequality of Pinelis(2014).
文摘RECENTLY, a number of papers have been published concerning the asymptotic independentproperties of V X<sub>i</sub> and sum from 1 X<sub>i</sub> of weakly dependent stationary sequence {X<sub>i</sub>}.In this letter, let {X<sub>i</sub>} be a standard normal sequence of random variables with zero meanand unit variance and write r<sub>ij</sub>=cov(X<sub>i</sub>, X<sub>j</sub>).
基金supported by National Natural Science Foundation of China (Grant No. 10871146)supported by Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.
文摘The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent sequence case.
基金supported by the National Natural Science Foundation of China under Grant Nos.11671012 and 11871072the Natural Science Foundation of Anhui Province under Grant Nos.1808085QA03,1908085QA01,1908085QA07+1 种基金the Provincial Natural Science Research Project of Anhui Colleges under Grant No.KJ2019A0003the Students Innovative Training Project of Anhui University under Grant No.201910357002。
文摘This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.
基金Supported by the Natural Science Foundation of Guangdong Province (Grant No.8151032001000006)
文摘In this paper we obtain theorems of complete convergence for weighted sums of arrays of rowwise negatively associated (NA) random variables. These results improve and extend the corresponding results obtained by Sung (2007), Wang et al. (1998) and Li et al. (1995) in independent sequence case.
文摘Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.
基金supported by National Natural Science Foundation of China (Grant Nos. 11601375 and 11626250)
文摘We show large deviation expansions for sums of independent and bounded from above random variables. Our moderate deviation expansions are similar to those of Cram′er(1938), Bahadur and Ranga Rao(1960), and Sakhanenko(1991). In particular, our results extend Talagrand's inequality from bounded random variables to random variables having finite(2 + δ)-th moments, where δ∈(0, 1]. As a consequence,we obtain an improvement of Hoeffding's inequality. Applications to linear regression, self-normalized large deviations and t-statistic are also discussed.