This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information ...This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information to ensure accurate torque control.Two proposed methods with different chopping transistors or a new PWM implementation require four or two current sensors to replace the current sensors on each phase regardless of the phase number.For both approaches,the actual phase current can be easily extracted during the single phase conducting region.However,how to separate the incoming and outgoing phase current values during the commutation region is the difficult issue to deal with.In order to derive these two adjacent currents,the explanations and comparisons of two proposed methods are described.Their effectiveness is verified by experimental results on a four-phase 8/6 SRM.Finally,the approach with a new PWM implementation is selected,which requires only two current sensors for reducing the number of sensors.The control system can be more compact and cheaper.展开更多
In this paper,an interleaved LCLC converter with enhancement-mode(E-mode)GaN devices is introduced to achieve the accurate current sharing performance for data center applications. Any tolerance in the resonant tank e...In this paper,an interleaved LCLC converter with enhancement-mode(E-mode)GaN devices is introduced to achieve the accurate current sharing performance for data center applications. Any tolerance in the resonant tank elements can lead to large load imbalance between any two different phases. Due to the steep gain curves of LCLC converters,conventional current sharing methods are not effective. In the proposed converter,the impedances of the resonant networks are matched by switching a capacitor,i.e.,switch controlled capacitor(SCC),in series with the resonant capacitor in one or some of the phases,which results in accurate load current sharing among the phases with an accuracy around 0.025%. The load share of a phase is sensed through the resonant current on it,and the control logic applied to such current sharing can be achieved. By this method,accurate current sharing is achieved for a wide input voltage range required for the hold-up time in data center applications. Interleaving is applied in the proposed multiphase LCLC converter,resulting in low current stress on the output capacitor and allowing ceramic capacitor implementation. Moreover,phase shedding accomplishes high light load efficiency. The performance of the proposed interleaved LCLC converter is verified by a two-phase 1 k W prototype with an input voltage ranging from 250 V to 400 V and a fixed 12 V output voltage.展开更多
为解决配电网、社区、充换电站3个利益主体之间难以保障能量最优交换和信息安全问题,提出一种主动配电网充换电站群智慧社区群的分层优化调度策略。首先,结合用户侧的储能需求和电动汽车充换电站的运行优化需求,在满足配电网经济运行的...为解决配电网、社区、充换电站3个利益主体之间难以保障能量最优交换和信息安全问题,提出一种主动配电网充换电站群智慧社区群的分层优化调度策略。首先,结合用户侧的储能需求和电动汽车充换电站的运行优化需求,在满足配电网经济运行的前提下建立电动汽车充换电站、配电网和社区共同参与的共享储能模式,上层为主动配电网运行模型,下层为社区和充换电站运行模型;其次,考虑各储能充换电站之间的交通流、能量流的时空特性,利用卡车对各电动汽车充换电站间的电池进行灵活调度,建立基于移动式储能车的电池时空共享模型;然后,为解决多主体(即充换电站、配电网、社区)参与的调度框架难以实现总体最优的问题,引入交替方向乘子法(alternating direction method of multipliers,ADMM)设计了社区充换电站配电网的3层能量共享模型;最后使用MATLAB对模型仿真编码求解。仿真结果表明:所提出的策略能够保障共享储能系统中各个主体隐私的安全性和用能的经济性,使能量共享形式更加多样化;可提高储能电池的使用效率和用能经济性,系统总成本降低了18%。展开更多
基金The test bench was supported by The Future Planning(NRF-2016H1D5A1910536)“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20164010200940)The authors would like to thank FONDS DAVID ET ALICE VAN BUUREN and FONDATION JAUMOTTE-DEMOULIN for the funding“Prix Van Buuren-Jaumotte-Demoulin”.
文摘This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information to ensure accurate torque control.Two proposed methods with different chopping transistors or a new PWM implementation require four or two current sensors to replace the current sensors on each phase regardless of the phase number.For both approaches,the actual phase current can be easily extracted during the single phase conducting region.However,how to separate the incoming and outgoing phase current values during the commutation region is the difficult issue to deal with.In order to derive these two adjacent currents,the explanations and comparisons of two proposed methods are described.Their effectiveness is verified by experimental results on a four-phase 8/6 SRM.Finally,the approach with a new PWM implementation is selected,which requires only two current sensors for reducing the number of sensors.The control system can be more compact and cheaper.
文摘In this paper,an interleaved LCLC converter with enhancement-mode(E-mode)GaN devices is introduced to achieve the accurate current sharing performance for data center applications. Any tolerance in the resonant tank elements can lead to large load imbalance between any two different phases. Due to the steep gain curves of LCLC converters,conventional current sharing methods are not effective. In the proposed converter,the impedances of the resonant networks are matched by switching a capacitor,i.e.,switch controlled capacitor(SCC),in series with the resonant capacitor in one or some of the phases,which results in accurate load current sharing among the phases with an accuracy around 0.025%. The load share of a phase is sensed through the resonant current on it,and the control logic applied to such current sharing can be achieved. By this method,accurate current sharing is achieved for a wide input voltage range required for the hold-up time in data center applications. Interleaving is applied in the proposed multiphase LCLC converter,resulting in low current stress on the output capacitor and allowing ceramic capacitor implementation. Moreover,phase shedding accomplishes high light load efficiency. The performance of the proposed interleaved LCLC converter is verified by a two-phase 1 k W prototype with an input voltage ranging from 250 V to 400 V and a fixed 12 V output voltage.
文摘为解决配电网、社区、充换电站3个利益主体之间难以保障能量最优交换和信息安全问题,提出一种主动配电网充换电站群智慧社区群的分层优化调度策略。首先,结合用户侧的储能需求和电动汽车充换电站的运行优化需求,在满足配电网经济运行的前提下建立电动汽车充换电站、配电网和社区共同参与的共享储能模式,上层为主动配电网运行模型,下层为社区和充换电站运行模型;其次,考虑各储能充换电站之间的交通流、能量流的时空特性,利用卡车对各电动汽车充换电站间的电池进行灵活调度,建立基于移动式储能车的电池时空共享模型;然后,为解决多主体(即充换电站、配电网、社区)参与的调度框架难以实现总体最优的问题,引入交替方向乘子法(alternating direction method of multipliers,ADMM)设计了社区充换电站配电网的3层能量共享模型;最后使用MATLAB对模型仿真编码求解。仿真结果表明:所提出的策略能够保障共享储能系统中各个主体隐私的安全性和用能的经济性,使能量共享形式更加多样化;可提高储能电池的使用效率和用能经济性,系统总成本降低了18%。