期刊文献+
共找到862篇文章
< 1 2 44 >
每页显示 20 50 100
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
1
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
The Effect of Mozart's Music on Social Learning Behavior of High School Students
2
作者 Jose Maria G. Pelayo III 《Psychology Research》 2014年第2期132-145,共14页
关键词 学习行为 中学生 社会 音乐 学习成绩 研究人员 学业成绩 创造力
下载PDF
Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms 被引量:4
3
作者 Mavra Mehmood Ember Ayub +7 位作者 Fahad Ahmad Madallah Alruwaili Ziyad AAlrowaili Saad Alanazi Mamoona Humayun Muhammad Rizwan Shahid Naseem Tahir Alyas 《Computers, Materials & Continua》 SCIE EI 2021年第4期641-657,共17页
Clinical image processing plays a signicant role in healthcare systems and is currently a widely used methodology.In carcinogenic diseases,time is crucial;thus,an image’s accurate analysis can help treat disease at a... Clinical image processing plays a signicant role in healthcare systems and is currently a widely used methodology.In carcinogenic diseases,time is crucial;thus,an image’s accurate analysis can help treat disease at an early stage.Ductal carcinoma in situ(DCIS)and lobular carcinoma in situ(LCIS)are common types of malignancies that affect both women and men.The number of cases of DCIS and LCIS has increased every year since 2002,while it still takes a considerable amount of time to recommend a controlling technique.Image processing is a powerful technique to analyze preprocessed images to retrieve useful information by using some remarkable processing operations.In this paper,we used a dataset from the Mammographic Image Analysis Society and MATLAB 2019b software from MathWorks to simulate and extract our results.In this proposed study,mammograms are primarily used to diagnose,more precisely,the breast’s tumor component.The detection of DCIS and LCIS on breast mammograms is done by preprocessing the images using contrast-limited adaptive histogram equalization.The resulting images’tumor portions are then isolated by a segmentation process,such as threshold detection.Furthermore,morphological operations,such as erosion and dilation,are applied to the images,then a gray-level co-occurrence matrix texture features,Harlick texture features,and shape features are extracted from the regions of interest.For classication purposes,a support vector machine(SVM)classier is used to categorize normal and abnormal patterns.Finally,the adaptive neuro-fuzzy inference system is deployed for the amputation of fuzziness due to overlapping features of patterns within the images,and the exact categorization of prior patterns is gained through the SVM.Early detection of DCIS and LCIS can save lives and help physicians and surgeons todiagnose and treat these diseases.Substantial results are obtained through cubic support vector machine(CSVM),respectively,showing 98.95%and 98.01%accuracies for normal and abnormal mammograms.Through ANFIS,promising results of mean square error(MSE)0.01866,0.18397,and 0.19640 for DCIS and LCIS differentiation during the training,testing,and checking phases. 展开更多
关键词 Image processing TUMOR segmentation DILATION EROSION machine learning classication support vector machine adaptive neuro-fuzzy inference system
下载PDF
Advances in Deep-Learning-based Precipitation Nowcasting Techniques
4
作者 ZHENG Qun LIU Qi +1 位作者 LAO Ping LU Zhen-ci 《Journal of Tropical Meteorology》 SCIE 2024年第3期337-350,共14页
Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than... Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than numerical weather models.The core concept involves the spatio-temporal extrapolation of current precipitation fields derived from ground radar echoes and/or satellite images,which was generally actualized by employing computer image or vision techniques.Recently,with stirring breakthroughs in artificial intelligence(AI)techniques,deep learning(DL)methods have been used as the basis for developing novel approaches to precipitation nowcasting.Notable progress has been obtained in recent years,manifesting the strong potential of DL-based nowcasting models for their advantages in both prediction accuracy and computational cost.This paper provides an overview of these precipitation nowcasting approaches,from which two stages along the advancing in this field emerge.Classic models that were established on an elementary neural network dominated in the first stage,while large meteorological models that were based on complex network architectures prevailed in the second.In particular,the nowcasting accuracy of such data-driven models has been greatly increased by imposing suitable physical constraints.The integration of AI models and physical models seems to be a promising way to improve precipitation nowcasting techniques further. 展开更多
关键词 precipitation nowcasting deep learning neural network classic model large model
下载PDF
A Study on Factors that Affect Motivation in English Learning of NonEnglish Major Cadets
5
作者 叶楠 《海外英语》 2017年第19期227-228,共2页
Motivation is one of the critical factors that affect foreign language learning. This study attempts to explore the factors that affect motivation in English learning of non-English major cadets. An investigation is c... Motivation is one of the critical factors that affect foreign language learning. This study attempts to explore the factors that affect motivation in English learning of non-English major cadets. An investigation is conducted in a military academy in southwest China, in which a Likert scale questionnaire is adopted. Through data analysis, eight factors are found to affect cadets' English learning motivation. Moreover, suggestions are provided to shed light on English teaching and learning in military academies. 展开更多
关键词 MOTIVATION English learning non-English major CADETS military academies
下载PDF
Analysis of the Online and Offline Hybrid Teaching of Traditional Chinese Medicine Classics
6
作者 Zhaowen Li Yingying Tan 《Journal of Contemporary Educational Research》 2022年第2期88-92,共5页
Distance education had sufficient technical capabilities before the novel coronavirus outbreak,but its advantages were not reflected in the normalized school running model.In the early stage of the pandemic,many stude... Distance education had sufficient technical capabilities before the novel coronavirus outbreak,but its advantages were not reflected in the normalized school running model.In the early stage of the pandemic,many students were affected and could not return to school.Many schools implemented online teaching to avoid delaying classes.After the alleviation of the pandemic,several colleges and universities taught students with a combination of online and offline methods after returning to school.The integration of online and offline teaching is conducive to the overall improvement of teaching quality in colleges and universities.This paper summarizes the shortcomings of the existing online and offline integrated education model in the teaching of traditional Chinese medicine classics in hope to further optimize the modem education system of traditional Chinese medicine courses. 展开更多
关键词 Teaching mode Classics ofTCM Autonomous learning Cooperative learning
下载PDF
Image-Based Automatic Diagnostic System for Tomato Plants Using Deep Learning 被引量:1
7
作者 Shaheen Khatoon Md Maruf Hasan +2 位作者 Amna Asif Majed Alshmari Yun-Kiam Yap 《Computers, Materials & Continua》 SCIE EI 2021年第4期595-612,共18页
Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss o... Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss of the entire crop,which is a key danger to farmers’livelihood and food security.Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost.Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss.Recent developments in Articial Intelligence(AI)and computer vision allow researchers to develop image-based automatic diagnostic tools to quickly and accurately detect diseases.In this work,we proposed an AI-based approach to detect diseases in tomato plants.Our goal is to develop an end-to-end system to diagnose essential crop problems in real-time,ensuring high accuracy.This paper employs various deep learning models to recognize and predict different diseases caused by pathogens,pests,and nutritional deciencies.Various Convolutional Neural Networks(CNNs)are trained on a large dataset of leaves and fruits images of tomato plants.We compared the performance of ShallowNet(a shallow network trained from scratch)and the state-of-theart deep learning network(models are ne-tuned via transfer learning).In our experiments,DenseNet consistently achieved high performance with an accuracy score of 95.31%on the test dataset.The results verify that deep learning models with the least number of parameters,reasonable complexity,and appropriate depth achieve the best performance.All experiments are implemented in Python,utilizing the Keras deep learning library backend with TensorFlow. 展开更多
关键词 Tomato plant disease classication and prediction deep learning convolutional neural network RestNet VGGNet DenseNet
下载PDF
A Survey on Software Cost Estimation Techniques 被引量:1
8
作者 Sai Mohan Reddy Chirra Hassan Reza 《Journal of Software Engineering and Applications》 2019年第6期226-248,共23页
The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a ve... The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a very much essential task. This paper presents a systematic review of different models used for software cost estimation which includes algorithmic methods, non-algorithmic methods and learning-oriented methods. The models considered in this review include both the traditional and the recent approaches for software cost estimation. The main objective of this paper is to provide an overview of software cost estimation models and summarize their strengths, weakness, accuracy, amount of data needed, and validation techniques used. Our findings show, in general, neural network based models outperforms other cost estimation techniques. However, no one technique fits every problem and we recommend practitioners to search for the model that best fit their needs. 展开更多
关键词 Software COST ESTIMATION classical SCE MODELS Algorithmic MODELS Non-Algorithmic MODELS learning-ORIENTED COST ESTIMATION TECHNIQUES
下载PDF
明清之际中国社会对欧洲文明的拒斥与接受 被引量:2
9
作者 吴根友 《武汉大学学报(哲学社会科学版)》 北大核心 2024年第1期32-43,共12页
16-18世纪耶稣会传教士来中国传教,同时也带来了部分西方的科学知识。中国的儒家士人和士大夫群体中,有一部分人激烈反对、拒斥接受这些知识,也有一部分人乐于学习传教士带来的科学知识,接受并试图融合而后超越西方文化。拒斥的一方,有... 16-18世纪耶稣会传教士来中国传教,同时也带来了部分西方的科学知识。中国的儒家士人和士大夫群体中,有一部分人激烈反对、拒斥接受这些知识,也有一部分人乐于学习传教士带来的科学知识,接受并试图融合而后超越西方文化。拒斥的一方,有出于意识形态立场、政治安全角度考虑的,如《破邪集》的编辑者徐昌治,以及该书中收录的各色人等,如清初布衣杨光先;也有王夫之这样的大儒,从儒家经学中天文、地理知识的固有立场出发,批评利玛窦的地圆说和地球与太阳及诸行星的距离说。接受的一方表现出比较多元的立场,有徐光启的“超胜会通”说、方以智的“坐集千古之智”折衷说,也有以康熙皇帝为代表的“西学中源”说。“西学中源”说虽然最终不利于中国人虚心学习西方的科学知识,但也包含着一定的合理的文明交流互鉴思想,即在学习外来文明中的先进内容时,必须保持民族文化的主体性。 展开更多
关键词 文明交流互鉴 耶稣会传教士“ 西学中源”说 儒家经学
下载PDF
清代书院课艺:联结书院学与科举学的历史文献
10
作者 刘海峰 赵凯 《大学教育科学》 北大核心 2024年第3期101-111,共11页
在上千年的中国书院史上,多数书院都重视以考促学。从流传形态来看,清代书院课艺主要分为课艺原件、编入别集中的课艺和以书院名义选编的课艺总集三大类别;就主课艺内容而言,清代书院课艺大体包括制艺试帖、经史词章、时务西学等门类。... 在上千年的中国书院史上,多数书院都重视以考促学。从流传形态来看,清代书院课艺主要分为课艺原件、编入别集中的课艺和以书院名义选编的课艺总集三大类别;就主课艺内容而言,清代书院课艺大体包括制艺试帖、经史词章、时务西学等门类。书院课艺数量与书院数量、考课次数、书院额数和刊刻频率直接相关。尽管历史上汗牛充栋的书院课艺多已散佚,但其现存数量依旧十分巨大,无法准确估算。清代书院课艺具有一定的经学、文学、史学、书院学和科举学价值,深入挖掘其中的有用元素,可以从书院考课内容与科举考试内容、考课衡文标准与科举衡文标准、书院育人目标与科举取士目标、科举人物的思想观念与关系网络、书院生徒平时成绩与科考录取率等方面,考察书院学与科举学的共生和互动关系。 展开更多
关键词 清代书院 课艺 书院学 科举学 联结
下载PDF
“红色经典”海外传播与国际社会对中国的认知 被引量:1
11
作者 姜智芹 《山东师范大学学报(社会科学版)》 北大核心 2024年第2期22-35,共14页
作为与当代社会发展结合紧密的文学艺术类型,“红色经典”的海外传播同国际社会对中国的认知有着内在的关联。“红色经典”在20世纪50—70年代集中传播到欧美和亚洲的一些国家,建构起关于“红色经典”的知识再生产;而国外知识界特别是... 作为与当代社会发展结合紧密的文学艺术类型,“红色经典”的海外传播同国际社会对中国的认知有着内在的关联。“红色经典”在20世纪50—70年代集中传播到欧美和亚洲的一些国家,建构起关于“红色经典”的知识再生产;而国外知识界特别是美国和法国左翼知识分子对红色中国的认同与赞赏起到了消解彼时西方主流社会对中国负面宣传的作用,他们对毛泽东思想的热衷与“红色经典”所反映的中国革命和社会主义建设成就形成互文、互动及互鉴。新世纪以来,国外文学文化领域对我国“红色经典”改编的关注,同近年来国外经济政治领域渴望了解并热衷探讨当代中国成功发展经验的内在需求,形成某种隐在的呼应。 展开更多
关键词 红色经典 翻译传播 国际社会对中国的认知 毛泽东思想
下载PDF
书院讲学与晚明理学传播——以“东林书院网络”为中心的考察
12
作者 黄漫远 《衡水学院学报》 2024年第1期105-109,共5页
晚明是理学传播较活跃的时期,书院是理学传播的重要场域之一。晚明书院学人秉承修正儒脉的立说宗旨,思考理学传播中淑世精神的传递,通过讲会、结社等方式在书院或书院之外弘扬己说,构建传播网络,形成了以东林书院为代表的多个波及全国... 晚明是理学传播较活跃的时期,书院是理学传播的重要场域之一。晚明书院学人秉承修正儒脉的立说宗旨,思考理学传播中淑世精神的传递,通过讲会、结社等方式在书院或书院之外弘扬己说,构建传播网络,形成了以东林书院为代表的多个波及全国、影响社会深层结构的学派群体,对晚明清初学统构建和学术传承起到了重要作用。 展开更多
关键词 晚明 书院 理学传播 东林书院
下载PDF
重树经学典范:曹元弼“郑注配经”的思想要义
13
作者 邓国光 《杭州师范大学学报(社会科学版)》 2024年第2期14-20,共7页
百年来中国人文学术与哲学思想的发展,在研究内容、态度、方法上均不断变化,在接受的同时亦自我调整。20世纪60、70年代“范式转移”的研究观念论开始大行其道,亦渗透进近40年来中国学术各类之中,与“新变”一词语义互参,成为当下学术... 百年来中国人文学术与哲学思想的发展,在研究内容、态度、方法上均不断变化,在接受的同时亦自我调整。20世纪60、70年代“范式转移”的研究观念论开始大行其道,亦渗透进近40年来中国学术各类之中,与“新变”一词语义互参,成为当下学术思路不断求新求变的集体风尚,形成集中一偏的思想困局。相对于集大成式的学术高度的追求,无疑是背道而驰。以客观态度审视学术研究主体性的范式观念,本来早存在于中国经学的传统之中,透过范式的“会通”构成强大的学术人格魅力,以顶天立地的文化精神为时代缔构正面的建设力量,从而体现集体幸福的愿望,形成“立”的精神动力,与“范式转移”所导致的“破”,实在是两副照面。因此特别彰显民国时代以来,在学制“废经”而学术全面西化的时代情景中,于学制外所存在坚持不懈的终身治经之士如曹元弼,其全力重建经学的典范价值,坚持树立中国文化的恒常属性,重建中国文化的高尚情操。正视曹元弼“范式重建”的意义,无疑能增强社会上有所“立”的正面价值。 展开更多
关键词 曹元弼 经学典范 郑注配经 学术大统 王道精神
下载PDF
季本的《大学私存》与中晚明的“朱、王之争”
14
作者 李敬峰 《北京师范大学学报(社会科学版)》 北大核心 2024年第3期121-128,共8页
不同于阳明其他弟子主要以讲学形式介入“朱、王之争”,有“王门的经学者”之称的季本则从“朱、王之争”的肯綮《大学》入手,倾力撰写《大学私存》,从文本和义理两个层面展开深入辨析。在《大学》文本上,季本在双谴双取朱子、阳明的基... 不同于阳明其他弟子主要以讲学形式介入“朱、王之争”,有“王门的经学者”之称的季本则从“朱、王之争”的肯綮《大学》入手,倾力撰写《大学私存》,从文本和义理两个层面展开深入辨析。在《大学》文本上,季本在双谴双取朱子、阳明的基础上,构建颇有特色的“季氏改本《大学》”;在《大学》义理上,他大体沿袭阳明的思想主张,而与朱子相差甚远,开显出“立足经学、宗本阳明、兼摄朱子”的解决“朱、王之争”的学术方案。他的方案一方面折射出阳明心学内部绝非已有的研究所表明的那样皆是陵夷经典式的,另一方面也反映出在早期的“朱、王之争”中,朱子学始终是“在场的”,以参照物的形式影响着阳明学的演进。这不仅有助于我们把握早期“朱、王之争”的学术样态,也有益于理解经典诠释与学术思潮之间的双向互动。 展开更多
关键词 季本 《大学私存》 “朱、王之争” 经学
下载PDF
杨简《慈湖春秋解》的宋学旨趣
15
作者 朱汉民 鲁晓聪 《中州学刊》 北大核心 2024年第3期108-115,F0002,共9页
杨简的《慈湖春秋解》具有鲜明的心学印记,其内容、解经方式以及思想内涵呈现出较为显著的宋学旨趣。杨简认同并高扬《春秋》宋学中的尊王共识,力倡“王命至上”,并通过对“君位继承”和“征讨侵伐”事件的讨论来表达自己对帝王的尊崇... 杨简的《慈湖春秋解》具有鲜明的心学印记,其内容、解经方式以及思想内涵呈现出较为显著的宋学旨趣。杨简认同并高扬《春秋》宋学中的尊王共识,力倡“王命至上”,并通过对“君位继承”和“征讨侵伐”事件的讨论来表达自己对帝王的尊崇以及对王权的维护。同时,杨简认为以尊王为代表的众“道”具足于《春秋》,故他视《春秋》为明“道”之书,并揭示其“是非不相掩”的特点。在挖掘《春秋》之“道”时,杨简采取“以心释《春秋》”的方式创通经义,不但对三传及历代研治《春秋》之人皆有评判取舍,而且他摆脱“理”的约束,径以“心”为评判是非之标准。《慈湖春秋解》作为宋学中心学一派鲜有的《春秋》经解著作,一定程度上反映了心学一派的《春秋》诠释取向和《春秋》宋学的时代特色,在宋代《春秋》学史上具有重要意义。 展开更多
关键词 杨简 《慈湖春秋解》 宋学 以心解经
下载PDF
在综合医院中医规培中加强中医经典教学的探索
16
作者 彭文波 张洪艳 《中国中医药现代远程教育》 2024年第20期54-57,共4页
中医住院医师规范化培训(以下简称“规培”)是中国住院知师培训的重要组成部分,同时也是医教协同深化中医学人才培养改革的关键环节,更是加强中医临床人才队伍建设的有效途径和加快构建具有中国特色医学人才培养体系的重要举措。中医经... 中医住院医师规范化培训(以下简称“规培”)是中国住院知师培训的重要组成部分,同时也是医教协同深化中医学人才培养改革的关键环节,更是加强中医临床人才队伍建设的有效途径和加快构建具有中国特色医学人才培养体系的重要举措。中医经典理论是中医学术的灵魂,是数千年来中医实践的经验结晶,是培养中医临床思维,提升中医临床技能的重要途径。此文分析综合医院中医规培教学中经典教学的不足,提出相应对策,探讨加强中医规培经典教学、培养学员中医临床思维的方法。 展开更多
关键词 中医住院医师规范化培训 综合医院 中医教学 中医经典学习 中医临床思维
下载PDF
微信结合CBL在中医经典住培带教中的应用
17
作者 曹云松 安晓娜 +3 位作者 解进 安海燕 张厂 国生 《中国中医药现代远程教育》 2024年第21期16-19,共4页
目的探讨以微信为载体结合基于案例的学习(Case-based learning,CBL)在中医经典教学中的应用效果。方法于2020年9月—2021年7月,以2019年10月在北京中医药大学各临床医学院参加中医住院医师规范化培训的59名中医内科专业住院医师为研究... 目的探讨以微信为载体结合基于案例的学习(Case-based learning,CBL)在中医经典教学中的应用效果。方法于2020年9月—2021年7月,以2019年10月在北京中医药大学各临床医学院参加中医住院医师规范化培训的59名中医内科专业住院医师为研究对象,按随机数字表法分为实验组和对照组,实验组30名,对照组29名。实验组采用微信公众号平台联合CBL教学,对照组采用单纯CBL教学,分别讲解《黄帝内经》《伤寒论》《金匮要略》及《温病条辨》经典条文理解及方药运用,每门课程20学时,比较两组学习效果。结果实验组住院医师中医经典测试成绩显著优于对照组,差异有统计学意义(P<0.05)。两组住院医师对教学模式各方面的满意度差异均具有统计学意义(P<0.05)。结论在中医经典教学中,应用以微信为载体结合CBL的教学法能够提高住院医师综合能力,有助于培养住院医师中医临床思维。 展开更多
关键词 中医经典 CBL教学法 微信 中医规范化培训 中医住院医师 中医内科
下载PDF
基于空间句法与机器学习的中国古典园林空间指征分析框架建构 被引量:1
18
作者 陈星汉 于瀚婷 +1 位作者 熊若璟 叶宇 《风景园林》 北大核心 2024年第3期123-131,共9页
【目的】中国古典园林空间一直以来难以被量化测度,空间句法的兴起使得相关研究向定量化发展,但既有研究与经典理论的融合度仍显不够,且空间特征分析的系统性有待加强。有必要提出一套系统的空间指征分析框架,以支持对古典园林空间的量... 【目的】中国古典园林空间一直以来难以被量化测度,空间句法的兴起使得相关研究向定量化发展,但既有研究与经典理论的融合度仍显不够,且空间特征分析的系统性有待加强。有必要提出一套系统的空间指征分析框架,以支持对古典园林空间的量化测度。【方法】对中国古典园林空间研究的经典理论进行归纳,使用DepthmapX对园林空间的可视层、可行层模型的各项视域分析指标进行计算,通过叠加分析对空间指征进行测度,借助DBSCAN算法实现对各空间指征聚类特征的识别。以留园、拙政园为例进行分析,并开展感知试验以验证其科学性。【结果】提出了兼顾人本感知和可测度的5项空间指征:渗透性、曲折度、可视性、可达性和差异度。空间指征的分析框架得到了案例研究与感知试验的支持。【结论】搭建了一套可操作、易推广的能够系统地提取、刻画并解释古典园林空间特色的指征分析框架,实现了量化分析工具和经典理论的深度融合,探索了中国古典园林空间量化研究的新可能。 展开更多
关键词 中国古典园林 量化研究 空间指征 空间句法 机器学习
下载PDF
绥远城将军满文奏折与八旗教育
19
作者 谢丽梅 斯钦布和 《西部学刊》 2024年第12期146-149,共4页
通过对绥远城将军满文奏折的深入研究,详细梳理了该城设立满蒙官学的经过,其中包括将军补熙的奏请、军机处的审议以及皇帝的批准等过程,分析了绥远城官学教育的主要内容,如培养目标、课程设置、教学管理等方面,指出绥远城官学在培养满... 通过对绥远城将军满文奏折的深入研究,详细梳理了该城设立满蒙官学的经过,其中包括将军补熙的奏请、军机处的审议以及皇帝的批准等过程,分析了绥远城官学教育的主要内容,如培养目标、课程设置、教学管理等方面,指出绥远城官学在培养满蒙翻译人才和选拔笔帖式方面发挥了重要作用。此外,对绥远城的书院与义学进行了简要介绍,包括启秀书院、古丰书院和启运书院的创办背景、课程设置以及教育目标等,这一研究揭示了绥远城八旗教育的发展脉络,为了解清代边疆地区的教育制度进行了有益的探索。 展开更多
关键词 绥远城 满文奏折 官学教育 书院 义学
下载PDF
基于DenseNet的经典-量子混合分类模型
20
作者 翟飞宇 马汉达 《计算机应用》 CSCD 北大核心 2024年第6期1905-1910,共6页
现有的图像分类模型越来越复杂,计算时所需的硬件资源和计算时间不断增加。针对该问题提出一种基于DenseNet的经典-量子混合分类模型(CQDenseNet模型)。首先,使用一个可在噪声中尺度量子(NISQ)设备上运行的变分量子电路(VQC)作为分类器... 现有的图像分类模型越来越复杂,计算时所需的硬件资源和计算时间不断增加。针对该问题提出一种基于DenseNet的经典-量子混合分类模型(CQDenseNet模型)。首先,使用一个可在噪声中尺度量子(NISQ)设备上运行的变分量子电路(VQC)作为分类器,替换DenseNet全连接层;其次,使用迁移学习,利用在ImageNet数据集上预先训练好的DenseNet模型作为CQDenseNet的预训练模型;最后,将CQDenseNet模型在中草药分类数据集和CIFAR-100数据集上与基准模型AlexNet、GoogLeNet、VGG19、ResNet和DenseNet-169进行对比。实验结果表明,CQDenseNet模型比所有基准模型中表现最好的基准模型:准确率分别提高了2.2、7.4个百分点,精确率分别提高了2.2、7.3个百分点,召回率分别提高了2.2、7.1个百分点,F1值分别提高了2.3、6.4个百分点,说明了经典-量子混合模型的性能优于经典模型。 展开更多
关键词 DenseNet 经典-量子混合模型 图像分类 迁移学习 变分量子电路
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部