The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR varia...The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.展开更多
In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial l...In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial losses, or in the pharmaceutical industry, it can result in an unusable batch. In these industries, batch reactors are commonly used, the control of which is essentially a problem of temperature control. In the industry, an increasing number of heating-cooling systems utilising three different temperature levels can be found, which are advantageous from an economic point of view. However, it makes the control more complicated. This paper presents a split-range designing technique using the model of the controlled system with the aim to design a split-range algorithm more specific to the actual sys- tem. The algorithm described provides high control performance when using it with classical PID-based cascade temperature control of jacketed batch reactors;however, it can be used with or as part of other types of controllers, for ex- ample, model-based temperature controllers. The algorithm can be used in the case of systems where only two as well as where three temperature levels are used for temperature control. Besides the switching between the modes of opera- tion and calculating the value of the manipulated variable, one of the most important functions of the split-range algo- rithm is to keep the sign of the gain of the controlled system unchanged. However, with a more system-specific split-range solution, not only can the sign of the gain be kept unchanged, but the gain can also be constant or less de- pendent on the state of the system. Using this solution, the design of the PID controller becomes simpler and can be implemented in existing systems without serious changes.展开更多
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. ...The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.展开更多
Urban heat island(UHI),driving by urbanization,plays an important role in urban sustainability under climate change.However,the quantification of UHI’s response to urbanization is still challenging due to the lack of...Urban heat island(UHI),driving by urbanization,plays an important role in urban sustainability under climate change.However,the quantification of UHI’s response to urbanization is still challenging due to the lack of robust and continuous temperature and urbanization datasets and reliable quantification methods.This study proposed a framework to quantify the response of surface UHI(SUHI)to urban expansion using the annual temperate cycle model.We built a continuous annual SUHI series at the buffer level from 2003 to 2018 in the Jing-Jin-Ji region of China using MODIS land surface temperature and imperviousness derived from Landsat.We then investigated the spatiotemporal dynamic of SUHI under urban expansion and examined the underlying mechanism.Spatially,the largest SUHI interannual variations occurred in suburban areas compared to the urban center and rural areas.Temporally,the increase in SUHI under urban expansion was more significant in daytime compare to nighttime.We found that the seasonal variation of SUHI was largely affected by the seasonal variations of vegetation in rural areas and the interannual variation was mainly attributed to urban expansion in urban areas.Additionally,urban greening led to the decrease in summer daytime SHUI in central urban areas.These findings deepen the understanding of the long-term spatiotemporal dynamic of UHI and the quantitative relationship between UHI and urban expansion,providing a scientific basis for prediction and mitigation of UHI.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been ...Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species.The Common Grackle(Quiscalus quiscula;Linnaeus 1758),though declining in portions of its range,is a widespread blackbird(Icteridae)species in North America east of the Rocky Mountains.This study examined how climate change might affect the future range distribution of Common Grackles.Methods:We used the R package Wallace and six general climate models(ACCESS1-0,BCC-CSM1-1,CESM1-CAM5-1-FV2,CNRM-CM5,MIROC-ESM,and MPI-ESM-LR)available for the future(2070)to identify climatically suitable areas,with an ecological niche modelling approach that includes the use of environmental conditions.Results:Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska,even under more optimistic climate change scenarios.Additionally,there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America.The most important bioclimatic variables for model predictions were Annual Mean Temperature,Temperature Seasonality,Mean Temperature of Wettest Quarter and Annual Precipitation.Conclusions:The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years.This research is important in helping us understand how climate change will affect future range patterns of widespread,common bird species.展开更多
目的探讨昼夜温差(diurnal temperature range,DTR)影响慢性肾脏病(chronic kidney diseases,CKD)日住院人次的影响。方法收集2019年1月1日至2020年12月31日乌鲁木齐市4所三甲医院、4所二甲医院、1所一甲医院CKD日住院人次数据,同期气...目的探讨昼夜温差(diurnal temperature range,DTR)影响慢性肾脏病(chronic kidney diseases,CKD)日住院人次的影响。方法收集2019年1月1日至2020年12月31日乌鲁木齐市4所三甲医院、4所二甲医院、1所一甲医院CKD日住院人次数据,同期气象及污染物数据来自于乌鲁木齐市主城区的6个国控监测点,采用分布滞后非线性模型,控制星期几效应、假期效应、长期时间趋势及其它因素,分析DTR与CKD日住院人次的关系。结果CKD日住院人次与DTR(滞后0~21 d)的暴露-反应曲线呈“N”形,CKD患者住院风险随DTR的升高呈先上升后下降趋势。低度和高度DTR对CKD患者住院的影响存在一定的滞后效应,中度DTR对住院影响较小;DTR=5℃时,单日效应出现在第3天[RR=1.081,95%CI(1.020,1.145),P<0.05],最大效应出现在第21天[RR=1.090,95%CI(1.014,1.173),P<0.05];高度DTR=14℃(P_(95))时,单日效应出现在第4天[RR=1.086,95%CI(1.007,1.172),P<0.05],最大效应出现在第5天[RR=1.089,95%CI(1.009,1.176),P<0.05],累积滞后均暂未发现有统计学差异。男性和年龄<65岁的CKD患者更易受到DTR的影响,寒冷季节和四季更替时DTR变化对CKD患者住院的影响更大。结论男性与<65岁CKD患者更易受到DTR的影响,在寒冷季节和四季交替DTR变化时更应重点保护易感人群免受DTR的影响。展开更多
In the paper,we have developed a 2-D physical-dynamical coupled climate model.Some sensitive experiments have been done by use of this model.First of all,we have studied the effects of different results by two radiati...In the paper,we have developed a 2-D physical-dynamical coupled climate model.Some sensitive experiments have been done by use of this model.First of all,we have studied the effects of different results by two radiational calcu- lation schemes on circulation variation.The calculated results have shown that the different radiation parameterization schemes give different results,therefore the variational effects of wind,temperature,and humidity field are presented on the medium-range circulation variation. Besides,we have also studied the role of the meridional eddy momentum fluxes in formation of the monsoon over East Asia.The results of study have shown that on the average,the roles of meridional eddy flux of momentum formative processes of monsoon which is added to momentum equations by using the scheme of moist process parameterization with plateau are manifest.展开更多
基金supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0102)the National Natural Science Foundation of China (Grant No. 41975135)+1 种基金the Natural Science Foundation of Sichuan,China (Grant No. 2022NSFSC1092)funded by the China Scholarship Council。
文摘The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.
文摘In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial losses, or in the pharmaceutical industry, it can result in an unusable batch. In these industries, batch reactors are commonly used, the control of which is essentially a problem of temperature control. In the industry, an increasing number of heating-cooling systems utilising three different temperature levels can be found, which are advantageous from an economic point of view. However, it makes the control more complicated. This paper presents a split-range designing technique using the model of the controlled system with the aim to design a split-range algorithm more specific to the actual sys- tem. The algorithm described provides high control performance when using it with classical PID-based cascade temperature control of jacketed batch reactors;however, it can be used with or as part of other types of controllers, for ex- ample, model-based temperature controllers. The algorithm can be used in the case of systems where only two as well as where three temperature levels are used for temperature control. Besides the switching between the modes of opera- tion and calculating the value of the manipulated variable, one of the most important functions of the split-range algo- rithm is to keep the sign of the gain of the controlled system unchanged. However, with a more system-specific split-range solution, not only can the sign of the gain be kept unchanged, but the gain can also be constant or less de- pendent on the state of the system. Using this solution, the design of the PID controller becomes simpler and can be implemented in existing systems without serious changes.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,Grant No. 20100032120047)State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (Grant No.1104)the National Natural Science Foundation of China (Grant No. 51209161)
文摘The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
基金supported by the National Science Foundation(CBET-1803920)。
文摘Urban heat island(UHI),driving by urbanization,plays an important role in urban sustainability under climate change.However,the quantification of UHI’s response to urbanization is still challenging due to the lack of robust and continuous temperature and urbanization datasets and reliable quantification methods.This study proposed a framework to quantify the response of surface UHI(SUHI)to urban expansion using the annual temperate cycle model.We built a continuous annual SUHI series at the buffer level from 2003 to 2018 in the Jing-Jin-Ji region of China using MODIS land surface temperature and imperviousness derived from Landsat.We then investigated the spatiotemporal dynamic of SUHI under urban expansion and examined the underlying mechanism.Spatially,the largest SUHI interannual variations occurred in suburban areas compared to the urban center and rural areas.Temporally,the increase in SUHI under urban expansion was more significant in daytime compare to nighttime.We found that the seasonal variation of SUHI was largely affected by the seasonal variations of vegetation in rural areas and the interannual variation was mainly attributed to urban expansion in urban areas.Additionally,urban greening led to the decrease in summer daytime SHUI in central urban areas.These findings deepen the understanding of the long-term spatiotemporal dynamic of UHI and the quantitative relationship between UHI and urban expansion,providing a scientific basis for prediction and mitigation of UHI.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
文摘Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species.The Common Grackle(Quiscalus quiscula;Linnaeus 1758),though declining in portions of its range,is a widespread blackbird(Icteridae)species in North America east of the Rocky Mountains.This study examined how climate change might affect the future range distribution of Common Grackles.Methods:We used the R package Wallace and six general climate models(ACCESS1-0,BCC-CSM1-1,CESM1-CAM5-1-FV2,CNRM-CM5,MIROC-ESM,and MPI-ESM-LR)available for the future(2070)to identify climatically suitable areas,with an ecological niche modelling approach that includes the use of environmental conditions.Results:Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska,even under more optimistic climate change scenarios.Additionally,there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America.The most important bioclimatic variables for model predictions were Annual Mean Temperature,Temperature Seasonality,Mean Temperature of Wettest Quarter and Annual Precipitation.Conclusions:The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years.This research is important in helping us understand how climate change will affect future range patterns of widespread,common bird species.
文摘In the paper,we have developed a 2-D physical-dynamical coupled climate model.Some sensitive experiments have been done by use of this model.First of all,we have studied the effects of different results by two radiational calcu- lation schemes on circulation variation.The calculated results have shown that the different radiation parameterization schemes give different results,therefore the variational effects of wind,temperature,and humidity field are presented on the medium-range circulation variation. Besides,we have also studied the role of the meridional eddy momentum fluxes in formation of the monsoon over East Asia.The results of study have shown that on the average,the roles of meridional eddy flux of momentum formative processes of monsoon which is added to momentum equations by using the scheme of moist process parameterization with plateau are manifest.