This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink powe...This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.展开更多
Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyrist...Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage contr...Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to control the node voltages regulating the reactive power exchanged between the network and the dispersed generators. The automatic distributed voltage regulation is a particular topic of the Smart Grids.展开更多
The source reactive-current compensation is crucial in energy transmission efficiency. The compensator design in frequency-domain was already widely discussed and examined. This paper presents results of a study on ho...The source reactive-current compensation is crucial in energy transmission efficiency. The compensator design in frequency-domain was already widely discussed and examined. This paper presents results of a study on how to design reactive compensators in time-domain. It’s the first time the reactive compensator have been designed in time domain. The example of compensator design was presented.展开更多
This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired pe...This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired performances by controlling the generated stator active and reactive power in a linear and decoupled manner. There- fore, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability. Thus, an optimal operation of the BDFIG in sub-synchronous operation is obtained as well as the stator power flows with the possibility of keeping stator power factor at a unity. The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control.展开更多
This paper describes two methods of representation of voltages and currents in electric circuits: in the vector form and in the shape of oscillations, represented as diagrams in the plane. The appropriate power compo...This paper describes two methods of representation of voltages and currents in electric circuits: in the vector form and in the shape of oscillations, represented as diagrams in the plane. The appropriate power components are discussed depending on the representation of voltages and currents. Special attention is paid to the instantaneous power peculiarities for diverse loads and non-sinusoidal conditions. A case study of power calculations in an electric circuit with a pluggable capacitor is presented. For these types of transient modes, the instantaneous power is represented in the form of active and reactive components. Calculation of active, reactive, and exchange powers for steady-state processes is presented.展开更多
Dynamic reactive power compensation equipment typically requires a fast response to output the necessary reactive power.The term"dynamic response time of reactive power"is often used but has never been clear...Dynamic reactive power compensation equipment typically requires a fast response to output the necessary reactive power.The term"dynamic response time of reactive power"is often used but has never been clearly defined.This paper summarizes the reactive power calculations under different definitions and algorithms and considers these calculations in terms of signal processing to simulate and analyze the step response.This paper subsequently focuses on the widely used instantaneous reactive power algorithm and finally concludes that the dynamic reactive power response time closely depends on the reactive power calculation method itself.The single-phase instantaneous reactive power algorithm has the fastest response time.The reactive power response time of dynamic reactive devices in power systems is a minimum of a quarter of one cycle time for the well-known and widely used single-phase reactive power algorithms.展开更多
文摘This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.
文摘Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
文摘Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to control the node voltages regulating the reactive power exchanged between the network and the dispersed generators. The automatic distributed voltage regulation is a particular topic of the Smart Grids.
文摘The source reactive-current compensation is crucial in energy transmission efficiency. The compensator design in frequency-domain was already widely discussed and examined. This paper presents results of a study on how to design reactive compensators in time-domain. It’s the first time the reactive compensator have been designed in time domain. The example of compensator design was presented.
文摘This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired performances by controlling the generated stator active and reactive power in a linear and decoupled manner. There- fore, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability. Thus, an optimal operation of the BDFIG in sub-synchronous operation is obtained as well as the stator power flows with the possibility of keeping stator power factor at a unity. The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control.
文摘This paper describes two methods of representation of voltages and currents in electric circuits: in the vector form and in the shape of oscillations, represented as diagrams in the plane. The appropriate power components are discussed depending on the representation of voltages and currents. Special attention is paid to the instantaneous power peculiarities for diverse loads and non-sinusoidal conditions. A case study of power calculations in an electric circuit with a pluggable capacitor is presented. For these types of transient modes, the instantaneous power is represented in the form of active and reactive components. Calculation of active, reactive, and exchange powers for steady-state processes is presented.
文摘Dynamic reactive power compensation equipment typically requires a fast response to output the necessary reactive power.The term"dynamic response time of reactive power"is often used but has never been clearly defined.This paper summarizes the reactive power calculations under different definitions and algorithms and considers these calculations in terms of signal processing to simulate and analyze the step response.This paper subsequently focuses on the widely used instantaneous reactive power algorithm and finally concludes that the dynamic reactive power response time closely depends on the reactive power calculation method itself.The single-phase instantaneous reactive power algorithm has the fastest response time.The reactive power response time of dynamic reactive devices in power systems is a minimum of a quarter of one cycle time for the well-known and widely used single-phase reactive power algorithms.