期刊文献+
共找到1,370篇文章
< 1 2 69 >
每页显示 20 50 100
Degradation Process of Coated Tinplate by Phase Space Reconstruction Theory 被引量:5
1
作者 石江波 夏大海 +2 位作者 王吉会 周超 刘彦宏 《Transactions of Tianjin University》 EI CAS 2013年第2期92-97,共6页
The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstructio... The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstruction theory.With the correlation dimensions obtained from the phase space reconstruction,the chaotic behavior of EN was quantitatively evaluated.The results show that both electrochemical potential noise (EPN) and electrochemical current noise (ECN) have chaotic properties.The correlation dimensions of EPN increase with corrosion extent,while those of ECN seem nearly unchanged.The increased correlation dimensions of EPN during the degradation process are associated with the increased susceptibility to local corrosion. 展开更多
关键词 phase space reconstruction CHAOS electrochemical potential noise electrochemical current noise correlation dimension organic coating
下载PDF
Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination
2
作者 Dapeng Chen Shenghua Yin +5 位作者 Weiguo Long Rongfu Yan Yufei Zhang Zepeng Yan Leiming Wang Wei Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1500-1511,共12页
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body... Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases. 展开更多
关键词 deep mining filling body–surrounding rock combination phase space reconstruction multiple time series stability prediction
下载PDF
Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction:case study of the coastal waters of Beihai,China
3
作者 Chongxuan Xu Ying Chen +2 位作者 Xueliang Zhao Wenyang Song Xiao Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期97-107,共11页
Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environme... Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators. 展开更多
关键词 seawater pH prediction Bi-gated recurrent neural(GRU)model phase space reconstruction attention mechanism improved complete ensemble empirical mode decomposition with adaptive noise
下载PDF
Phase-Space Areas of the Body Motion in the Solar System Deduced from the Bohr-Sommerfeld Atomic Theory and Approximate Invariance of Their Ratios for the Pairs of Planets and Satellites
4
作者 Stanislaw Olszewski Tadeusz Kwiatkowski 《Journal of Modern Physics》 2012年第9期1142-1151,共10页
Energy-time and momentum-position phase spaces defined by the electron orbits in the hydrogen-like atom exhibit special properties of equivalence. It is demonstrated that equivalence of the same kind can be obtained f... Energy-time and momentum-position phase spaces defined by the electron orbits in the hydrogen-like atom exhibit special properties of equivalence. It is demonstrated that equivalence of the same kind can be obtained for the phase-space areas defined by the orbit pairs of planets, or satellites, which compose the solar system. In the choice of the examined areas it is useful to be guided by the Bohr-Sommerfeld atomic theory. 展开更多
关键词 Ratios of the phase-space Areas and theIR INVARIANCE Planets and SATELLITES Bohr-Sommerfeld Atomic theory
下载PDF
Transverse phase space reconstruction study in Shanghai soft X-ray FEL facility 被引量:2
5
作者 Qing-Lin Yu Duan Gu +1 位作者 Meng Zhang Ming-Hua Zhao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第1期9-15,共7页
Phase space is one of the most important parameters used to describe beam properties. Computer tomography, as a method for reconstructing phase space and measuring beam emittance, has been used in many accelerators ov... Phase space is one of the most important parameters used to describe beam properties. Computer tomography, as a method for reconstructing phase space and measuring beam emittance, has been used in many accelerators over the past few decades. In this paper, we demonstrate a transverse phase space reconstruction study in the Shanghai soft X-ray free electron laser facility. First,we discuss the basic principles of phase space reconstruction and the advantage of reconstructing beam distribution in normalized phase space. Then, the phase space reconstruction results by different computer tomography methods based on the maximum entropy(MENT) algorithm and the filtered back projection algorithm in normalized phase space are presented. The simulation results indicate that,with proper configuration of the phase advance between adjacent screens, the MENT algorithm is feasible and has good efficiency. The beam emittance and Twiss parameters are also calculated using the reconstructed phase space. 展开更多
关键词 EMITTANCE phase space reconstruction MENT algorithm SXFEL
下载PDF
Prediction of elevator traffic flow based on SVM and phase space reconstruction 被引量:4
6
作者 唐海燕 齐维贵 丁宝 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期111-114,共4页
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa... To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized. 展开更多
关键词 support vector machine phase space reconstruction prediction of elevator traffic flow RBF neural network
下载PDF
Phase space reconstruction of chaotic dynamical system based on wavelet decomposition 被引量:2
7
作者 游荣义 黄晓菁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期114-118,共5页
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo... In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system. 展开更多
关键词 chaotic dynamical system phase space reconstruction wavelet decomposition
下载PDF
Study on resource quantity of surface water based on phase space reconstruction and neural network 被引量:5
8
作者 曹连海 郝仕龙 陈南祥 《Journal of Coal Science & Engineering(China)》 2006年第1期39-42,共4页
Proposed a new method to disclose the complicated non-linearity structure of the water-resource system, introducing chaos theory into the hydrology and water resources field, and combined with the chaos theory and art... Proposed a new method to disclose the complicated non-linearity structure of the water-resource system, introducing chaos theory into the hydrology and water resources field, and combined with the chaos theory and artificial neural networks. Training data construction and networks structure were determined by the phase space reconstruction, and establishing nonlinear relationship of phase points with neural networks, the forecasting model of the resource quantity of the surface water was brought forward. The keystone of the way and the detailed arithmetic of the network training were given. The example shows that the model has highly forecasting precision. 展开更多
关键词 phase space reconstruction neural network resource quantity of the surface water forecasting model
下载PDF
Classification of power quality combined disturbances based on phase space reconstruction and support vector machines 被引量:3
9
作者 Zhi-yong LI Wei-lin WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期173-181,共9页
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl... Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages. 展开更多
关键词 Power Quality (PQ) Combined disturbance CLASSIFICATION phase space reconstruction (PSR) Support Vector Machines (SVMs)
下载PDF
Analysis of dynamic of two-phase flow in small channel based on phase space reconstruction combined with data reduction sub-frequency band wavelet 被引量:3
10
作者 李洪伟 刘君鹏 +2 位作者 李涛 周云龙 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期1017-1026,共10页
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler... A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel. 展开更多
关键词 Small channel two-phase flow Flow pattern dynamics phase space reconstruction Data reduction sub-frequency band wavelet
下载PDF
PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4
11
作者 Zhang Shuqing Hu Yongtao +1 位作者 Bao Hongyan Li Xinxin 《Journal of Electronics(China)》 2014年第1期61-67,共7页
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco... Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. 展开更多
关键词 phase-space reconstruction Chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis Function(RBF) neural network
下载PDF
SELECTION OF PROPER EMBEDDING DIMENSION IN PHASE SPACE RECONSTRUCTION OF SPEECH SIGNALS
12
作者 Lin Jiayu Huang Zhiping Wang Yueke Shen Zhenken (Dept.4 and Dept.8, Nat/onaJ University of Defence Technology, Changsha 410073) 《Journal of Electronics(China)》 2000年第2期161-169,共9页
In phase space reconstruction of time series, the selection of embedding dimension is important. Based on the idea of checking the behavior of near neighbors in the reconstruction dimension, a new method to determine ... In phase space reconstruction of time series, the selection of embedding dimension is important. Based on the idea of checking the behavior of near neighbors in the reconstruction dimension, a new method to determine proper minimum embedding dimension is constructed. This method has a sound theoretical basis and can lead to good result. It can indicate the noise level in the data to be reconstructed, and estimate the reconstruction quality. It is applied to speech signal reconstruction and the generic embedding dimension of speech signals is deduced. 展开更多
关键词 Speech signals CHAOS phase space reconstruction EMBEDDING DIMENSION False nearest NEIGHBOR Noise level estimation reconstruction quality
下载PDF
Application of phase space reconstruction and v-SVR algorithm in predicting displacement of underground engineering surrounding rock
13
作者 史超 陈益峰 +1 位作者 余志雄 杨坤 《Journal of Coal Science & Engineering(China)》 2006年第2期21-26,共6页
A new method for predicting the trend of displacement evolution of surroundingrock was presented in this paper.According to the nonlinear characteristics of displace-ment time series of underground engineering surroun... A new method for predicting the trend of displacement evolution of surroundingrock was presented in this paper.According to the nonlinear characteristics of displace-ment time series of underground engineering surrounding rock,based on phase spacereconstruction theory and the powerful nonlinear mapping ability of support vector ma-chines,the information offered by the time series datum sets was fully exploited and thenon-linearity of the displacement evolution system of surrounding rock was well described.The example suggests that the methods based on phase space reconstruction and modi-fied v-SVR algorithm are very accurate,and the study can help to build the displacementforecast system to analyze the stability of underground engineering surrounding rock. 展开更多
关键词 displacement of surrounding rock phase space reconstruction support vector machine PREDICTION
下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
14
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
下载PDF
Predicting of Power Quality Steady State Index Based on Chaotic Theory Using Least Squares Support Vector Machine 被引量:2
15
作者 Aiqiang Pan Jian Zhou +2 位作者 Peng Zhang Shunfu Lin Jikai Tang 《Energy and Power Engineering》 2017年第4期713-724,共12页
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta... An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability. 展开更多
关键词 CHAOTIC theory Least SQUARES Support Vector Machine (LSSVM) Power Quality STEADY State Index phase space reconstruction Particle SWARM Optimization
下载PDF
A Phase Space Reconstruction Based Approach to Throughput Prediction in Semiconductor Wafer Fabrication System 被引量:1
16
作者 吴立辉 张洁 《Journal of Donghua University(English Edition)》 EI CAS 2010年第1期81-86,共6页
In order to manage and control semiconductor wafer fabrication system (SWFS) more effectively,the daily throughput prediction data of wafer fab are often used in the planning and scheduling of SWFS.In this paper,an ar... In order to manage and control semiconductor wafer fabrication system (SWFS) more effectively,the daily throughput prediction data of wafer fab are often used in the planning and scheduling of SWFS.In this paper,an artificial neural network (ANN) prediction method based on phase space reconstruction (PSR) and ant colony optimization (ACO) is presented,in which the phase space reconstruction theory is used to reconstruct the daily throughput time series,the ANN is used to construct the daily throughput prediction model,and the ACO is used to train the connection weight and bias values of the neural network prediction model.Testing with factory operation data and comparing with the traditional method show that the proposed methodology is effective. 展开更多
关键词 daily throughput prediction phase space reconstruction artificial neural network
下载PDF
Partition airflow varying features of chaos-theory-based coalmine ventilation system and related safety forecasting and forewarning system 被引量:1
17
作者 Zhang Xiaoqiang Cheng Weimin +2 位作者 Zhang Qin Yang Xinxiang Du Wenzhou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期269-275,共7页
To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist... To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value. 展开更多
关键词 Mine ventilation system Safety partition Reconstructed phase space Maximum Lyapunov exponent Chaos forecasting and forewarning
下载PDF
Neural network forecasting model based on phase space re-construction in water yield of mine
18
作者 刘卫林 董增川 +1 位作者 陈南祥 曹连海 《Journal of Coal Science & Engineering(China)》 2007年第2期175-178,共4页
The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi-... The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example, the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision. 展开更多
关键词 neural network forecasting model phase space reconstruction water yield ofmine CHAOS
下载PDF
The Guidance and Meaning directed by the Three Phases of Memory on the Reading of Literature Works Written by the Style of Stream of Consciousness ——taking the Work Hear the Wind Sing by Haruki Murakami as an Example
19
作者 Li Ying 《International English Education Research》 2014年第11期28-31,共4页
Recently, the researchers put their attention on the literature works on Virginia Woolf or James Joyce too heavily just because the skill of stream of consciousness is used through the novel completely. Choosing this ... Recently, the researchers put their attention on the literature works on Virginia Woolf or James Joyce too heavily just because the skill of stream of consciousness is used through the novel completely. Choosing this novel by Japanese writer as an example is an experiment, because the stream of consciousness as a composing method has melted its impression into the modem novel. And in the researcher's opinion, regardless the traditional part, the researching focus should be shifted on the works written by nowadays writer. To begin this paper, there are four questions should be solved: First, the definition of stream of consciousness should be known clearly; another question is the structure analysis of structure of Hear the Wind Sing; secondly, compared with the mental space theory and blending theory by Fauconnier, how to judge the function of Three Phases of memory's direction on reading should be focused on; thirdly, the reason why readers meet the problem of barrier when they read the stream of consciousness novel, and how the memory helps to solve the problem should be study in this section. Fourth, the extra factors which support the function of memory will enhance the skill of reading the SOC novel and finally foreground the meaning. 展开更多
关键词 stream of consciousness Novel the lhree phases of memory mental space theory blending theory (Juidance andMeaning
下载PDF
Explanation of Relation between Wave Function and Probability Density Based on Quantum Mechanics in Phase Space
20
作者 Chol Jong Jin-Sim Kim +1 位作者 Shin-Hyok Jon Son-Il Jo 《World Journal of Mechanics》 2023年第1期20-72,共53页
The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamenta... The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics. 展开更多
关键词 Quantum Ensemble theory Quantum Mechanics In phase space Wave Function Probability Density Schrödinger Equation
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部