期刊文献+
共找到1,136篇文章
< 1 2 57 >
每页显示 20 50 100
Integrated Photothermal Nanoreactors for Effi cient Hydrogenation of CO_(2) 被引量:3
1
作者 Jiahui Shen Rui Tang +8 位作者 Zhiyi Wu Xiao Wang Mingyu Chu Mujin Cai Chengcheng Zhang Liang Zhang Kui Yin Le He Chaoran Li 《Transactions of Tianjin University》 EI CAS 2022年第4期236-244,共9页
To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is... To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is usually restricted by the trade-off between the dispersity and light absorption property of metal catalysts.Here we demonstrate a simple SiO 2-protected metal-organic framework pyrolysis strategy to fabricate a new type of integrated photothermal nanoreactor with a comparatively high metal loading,dispersity,and stability.The core-satellite structured Co@SiO_(2)exhibits strong sunlight-absorptive abil-ity and excellent catalytic activity in CO_(2)hydrogenation,which is ascribed to the functional separation of diff erent sizes of Co nanoparticles.Large-sized plasmonic Co nanoparticles are mainly responsible for the light absorption and conversion to heat(nanoheaters),whereas small-sized Co nanoparticles with high intrinsic activities are responsible for the catalysis(nanoreactors).This study provides a new concept for designing effi cient photothermal catalytic materials. 展开更多
关键词 CO_(2)hydrogenation Photothermal catalysis Integrated photothermal reactor Light absorption property Intrinsic catalytic capacity
下载PDF
A METHOD FOR DETERMINATION OF CONCENTRATION OF ATOMIC HYDROGEN PERMEATED IN MULTI-LAYER STRUCTURE WALL OF HYDROGENATION REACTORS
2
作者 G. Ya X.Y Zhang and Y. L. Du(State Key Laboratory for Corrosion and Protection, Institute of Corrosion and Protection of Metals,The Chinese Academy of Sciences, Shenyang 110015, China)(Applied Chemistry Division of Sciences Institute, Shenyang Polytechni 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第6期0-0,0-0+0-0,共6页
It was proposed how the concentration distribution was calculated in the treble lager wall of hgdrogenation reactor according to the principle of hydrogen diffusion at the steady state in this paper. Based on the stea... It was proposed how the concentration distribution was calculated in the treble lager wall of hgdrogenation reactor according to the principle of hydrogen diffusion at the steady state in this paper. Based on the steady hydrogen permeation current density i∞ measund with the hydrogen probe at a given temperature, the hydmpen concentrationson the key interfaces and hydrogen distribution at any given mdial profile in the single, double or treble layer wall of hydrogenation reactor could be found by applying the presented equations throoph suitable parmeters ioput. The theoretical bases were provided for developing the nondestructive probing technique of the concentration of atomic hydmpen in the wallS of hydrogenation reactors. 展开更多
关键词 hydrogen permeation hydrogen distribution hydrogenation reactor mathematical method
下载PDF
Preparation of Pd/c-Al_(2)O_(3)/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor 被引量:1
3
作者 Hai-Long Liao Bao-Ju Wang +4 位作者 Ya-Zhao Liu Yong Luo Jie-Xin Wang Guang-Wen Chu Jian-Feng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期311-319,共9页
Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed ... Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor. 展开更多
关键词 Monolithic catalyst Rotating packed bed reactor hydrogenation SELECTIVITY
下载PDF
Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor 被引量:2
4
作者 Masoud Hasany Mohammad Malakootikhah +1 位作者 Vahid Rahmanian Soheila Yaghmaei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1316-1325,共10页
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal... A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor. 展开更多
关键词 Catalytic membrane reactor Mathematical modeling Ethane dehydrogenation hydrogen combustion
下载PDF
Effect of vacuum gas oil hydrotreating reactor on multiple reactors and hydrogen network
5
作者 Donghui Lü YingjiaWang +4 位作者 Lingjun Huang Di Zhang Guilian Liu Wei Li PengWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2498-2509,共12页
The inlet temperature of the Vacuum Gas Oil(VGO)hydrotreating reactor of a refinery is analyzed with the integration of multiple series reactors and hydrogen network considered.The effect of the inlet temperature(T1)o... The inlet temperature of the Vacuum Gas Oil(VGO)hydrotreating reactor of a refinery is analyzed with the integration of multiple series reactors and hydrogen network considered.The effect of the inlet temperature(T1)on hydrogen sinks/sources and the product output is analyzed systematically based on the simulation of the series reactors,including VGO hydrotreating reactor,hydrocracking reactor,fluid catalytic cracking reactor and visbreaking reactor.The general relation between the Hydrogen Utility Adjustment(HUA)and multiple pairs of varying sinks and sources is deduced,and correlations between varying streams and T1 are linearly fitted.Based on this,the quantitative equation between HUA and T1 is derived,and corresponding diagram is constructed.The T1 corresponding the minimum hydrogen consumption is identified to be 345°C. 展开更多
关键词 VGO HYDROTREATING reactors TEMPERATURE hydrogen CONSUMPTION
下载PDF
Resolving a Challenge in the Modeling of Hydrogen Production Using Steam Reforming of Methane in Monolith Reactors Using CFD Methods
6
作者 Mohammad Irani 《Advances in Materials Physics and Chemistry》 2012年第4期248-252,共5页
Reaction modeling of SMR (Steam Methane Reforming) process inside monolith reactors using two approaches were investigated and compared with each other. In the first approach, the reactions were assumed to take place ... Reaction modeling of SMR (Steam Methane Reforming) process inside monolith reactors using two approaches were investigated and compared with each other. In the first approach, the reactions were assumed to take place exactly on the wall surfaces, while in the second approach they considered inside a thin thickness near the walls. Experiments of SMR were carried out in a lab-scale monolith reactor. A single-channel was considered and CFD model were developed for each of aforementioned approaches. Comparisons between modeling results and experimental data showed that the first approach (surface model) gives better results. Performing reactions are difficult and expensive, CFD simulations are considered as numerical experiments in many cases. It was concluded that obtained results from CFD analysis gives precise guidelines for further studies on optimization of SMR monolithic reactor performance. 展开更多
关键词 hydrogen Production Monolithic reactor CFD SMR Surface-model Volume-model
下载PDF
Production of hydrogen and syngas via pyrolysis of bagasse in a dual bed reactor 被引量:3
7
作者 Morteza Shoja Mokhtar Akhond Babatabar +1 位作者 Ahmad Tavasoli Abtin Ataei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期639-644,共6页
Pyrolysis of bagasse followed by thermal cracking of tar was carded out at atmospheric pressure using a dual bed reactor. The first bed was used for the pyrolysis and the second bed was used for thermal cracking of ta... Pyrolysis of bagasse followed by thermal cracking of tar was carded out at atmospheric pressure using a dual bed reactor. The first bed was used for the pyrolysis and the second bed was used for thermal cracking of tar. Iron fillings were used as the packed bed material in the second bed. The effects of reaction time (20 to 40 rain), reactor temperature (600 to 900 ℃) and packed bed height (40-100 mm) on the product (char, tar and gas) yield and gas (H2, CO, CO2, CH4, CnHm) composition were studied. Over the ranges of the experimental conditions used, the operating conditions were optimized for pyrolysis temperature around 850 ℃, a reaction time of 30 min and packed bed height of 100 mm, thus we could obtain a gas richer in hydrogen and carbon monoxide and poorer in carbon dioxide and hydrocarbons. It was observed that compared with single bed process, dual bed process increased the gas yield from 0.397 to 0.750 m3/kg and decreased the tar yield from 0.445 to 0.268 g/g while the heating value of the product gas remained almost constant (10-11 M J/m3). 展开更多
关键词 BAGASSE dual bed reactor hydrogen SYNGAS yield
下载PDF
Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor 被引量:3
8
作者 D.Torres S.deLlobet +3 位作者 J.L.Pinilla M.J.Lzaro I.Suelves R.Moliner 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期367-373,共7页
Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed rea... Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study ot the effects of some process variables, including reaction temperature and space velocity, is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6 LN/(gcat·h), a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run. In addition, carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor. 展开更多
关键词 hydrogen production fluidized bed reactor metal catalysts
下载PDF
Hydrogen energy recovery from high strength organic wastewater with ethanol type fermentation using acidogenic EGSB reactor 被引量:6
9
作者 任南琪 郭婉茜 +1 位作者 王相晶 张露思 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期603-607,共5页
A lab-scale expanded granular sludge bed (EGSB) reactor was employed to evaluate the feasibility of the hydrogen energy recovery potential from high strength organic wastewater. The results showed that a maximum hyd... A lab-scale expanded granular sludge bed (EGSB) reactor was employed to evaluate the feasibility of the hydrogen energy recovery potential from high strength organic wastewater. The results showed that a maximum hydrogen production rate of 7.43 m^3 H2/m^3 reactor · d and an average hydrogen production rate of 6.44- ms H^2/ms reactor · d were achieved with the hydrogen content of 50% -56% in the biogas during the 90-day operation. At the acidogenic phase, COD removal rate was stable at about 15%. In the steady operation period, the main liquid end products were ethanol and acetic acid, which represented ethanol type fermentation. Among the liquid end products, the concentration percentage of ethanol and acetic acid amounted to 69.5% - 89. 8% and the concentration percentage of ethanol took prominent about 51.7% - 59. 1%, which is better than the utilization of substrate for the methanogenic bacteria. An ethanol type fermentation pathway was suggested in the operation of enlarged industrial continuous hydrogen bio-producing reactors. 展开更多
关键词 hydrogen production ethanol-acetate fermentation EGSB reactor acidogenic energy recovery
下载PDF
Periodic Packing Mode for Trickle-Bed Reactors: Experiments and Modeling 被引量:2
10
作者 刘国柱 米镇涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第3期372-378,共7页
A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determini... A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement. 展开更多
关键词 trickle-bed reactor periodic packing mode MODELING hydrogenation 2- ethylanthraquinone
下载PDF
Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor 被引量:23
11
作者 Siqing Xia Fohua Zhong +2 位作者 Yanhao Zhang Haixiang Li Xin Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第2期257-262,共6页
A hydrogen-based membrane biofilm reactor (MBfR) using H2 as electron donor was investigated to remove nitrate from groundwater. When nitrate was first introduced to the MBfR, denitrification took place on the shell... A hydrogen-based membrane biofilm reactor (MBfR) using H2 as electron donor was investigated to remove nitrate from groundwater. When nitrate was first introduced to the MBfR, denitrification took place on the shell side of the membranes immediately, and the effluent concentration of nitrate continuously decreased with 100% removal rate on day 45 under the influent nitrate concentration of 5 mg NO3^--N/L, which described the acclimating and enriching process of autohydrogenotrophic denitrification bacteria. A series of short-term experiments were applied to investigate the effects of hydrogen pressures and nitrate loadings on deniWification. The results showed that nitrate reduction rate improved as H2 pressure increasing, and over 97% of total nitrogen removal rate was achieved when the nitrate loading increased from 0.17 to 0.34 g NO3^--N/(m^2.day) without nitrite accumulation. The maximum deniwification rate was 384 g N/(m^3.day). Partial sulfate reduction, which occurred in parallel to nitrate reduction, was inhibited by denitrififcation due to the competition for H2. This research showed that MBfR is effective for removing nitrate from the contaminated groundwater. 展开更多
关键词 hydrogen-based membrane biofilm reactor autotrophic denitrification NITRATE GROUNDWATER
下载PDF
Enantioselective Hydrogenation of Ethyl 2-Oxo-4-phenylbutyrate on Cinchona-Platinum Catalysts 被引量:2
12
作者 夏涛 任其龙 吴平东 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第6期764-770,共7页
Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amou... Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor. 展开更多
关键词 enantioselective hydrogenation ethyl (R)-2-hydroxy-4-phenylbutyrate trickle-bed reactor KINETICS
下载PDF
Two-dimensional Simulation for Hydrogen/Air Combustion in a Monolith Reactor 被引量:1
13
作者 洪若瑜 丁剑敏 Vlachos D G 《过程工程学报》 EI CAS CSCD 北大核心 2005年第1期10-17,共8页
Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerica... Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier-Stokes (N-S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated. 展开更多
关键词 蜂窝状催化剂 二维模拟 空气燃烧 反应器 氢气
下载PDF
Technology of automatic cladding on internal surface of hydrogenated reactor elbow
14
作者 Cul Shusen Yin Dianxiang +1 位作者 Zhao Changsheng Yang KefeiWei Lun and Yin Liang(Harbin Research Institute of Welding) 《China Welding》 EI CAS 1995年第1期11-18,共8页
A newly developed automatic spiral cladding machine for internal surface of hydrogenated reactor elbow is introduced.Workpiece being welded is rotated at various speeds and fed in along axial direction.TIG welding pro... A newly developed automatic spiral cladding machine for internal surface of hydrogenated reactor elbow is introduced.Workpiece being welded is rotated at various speeds and fed in along axial direction.TIG welding process with filler metal is applied with this machine.Welding is performed in flat position. The machine is intellectually controlled by a microprocessor. Torch waving width and welding speed is varied according to a formula,that the product of waving width and welding speed is constant. So the thickness of cladding layers at different points is uniform. The requirements of hydrogenation to cladding are conformed with this machine. 展开更多
关键词 SURFACING ELBOW hydrogenated reactor TIG welding welding machine
下载PDF
A solvent-free,selective liquid phase hydrogenation of nitroarenes to aniline in slurry bubble mode on porous NiMo bimetallic catalyst
15
作者 Di Liu Pengshan Zhao +4 位作者 Hao Zhang Minjie Liu Junyan Wang Guoming Zhao Qingbin Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第5期175-180,共6页
NiMo bimetallic catalysts were prepared by a solid reaction method.On the NiMo catalyst,the selective liquid phase hydrogenation of nitrobenzene to aniline was achieved in slurry bubble mode.And the high yields(98.9%)... NiMo bimetallic catalysts were prepared by a solid reaction method.On the NiMo catalyst,the selective liquid phase hydrogenation of nitrobenzene to aniline was achieved in slurry bubble mode.And the high yields(98.9%)were obtained under the conditions of 80℃,solvent-free and atmospheric pressure.The effect of Mo on the catalytic behavior of Ni based catalyst was investigated.The characterization displayed that the inclusion of Mo could improve the specific surface area and pore volume,and the solid reaction method made metal Mo enrichment on the surface of catalyst.These two aspects should be responsible for excellent catalytic performance of NiMo catalyst.In sum,we described a simple and efficient NiMo catalyst and provided a facile and green procedure for liquid phase hydrogenation of nitrobenzene to aniline. 展开更多
关键词 Catalysis NITROARENES hydrogenation NIMO catalyst Solid reaction BUBBLE column reactor
下载PDF
Role of Periodic Input Composition and Sweeping Gas for Improvement of Hydrogen Production in a Palladium Membrane Reactor by Partial Oxidation of Methane
16
作者 Lemnouer Chibane Brahim Djellouli 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期577-588,共12页
The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on metha... The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on methane conversion and the hydrogen recovery are numerically estalallshed with two penodtc input ttmctlons. In order to analyze the effect of the inputs modulation, the reaction was performed under low steam to methane ratio at a mod-erate temperature and pressure. It was obtained that to achieve process intensification is to operate the process in a periodic way. The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation. Moreover, there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery. It is noteworthy that the comparison between the predicted performancevia the sinusoidal and the'square ways show that the better'average performance was obtainedwith the square way. 展开更多
关键词 hydrogen production MODULATION periodic operation Pd-membrane reactor
下载PDF
Catalytic Hydrogenation of Aromatic Compounds in the Liquid Phase
17
作者 Milan Králik Mária Turáková +1 位作者 Ivan Macák Stefan Wenchich 《Journal of Chemistry and Chemical Engineering》 2012年第12期1074-1082,共9页
Peculiarities of a liquid phase hydrogenation, namely lower diffusivity of components influencing the reaction rate and deactivation of catalysts by leaching, are discussed. A focus is on hydrogenation of aromatic com... Peculiarities of a liquid phase hydrogenation, namely lower diffusivity of components influencing the reaction rate and deactivation of catalysts by leaching, are discussed. A focus is on hydrogenation of aromatic compounds, whereas the following processes are evaluated: (l) partial hydrogenation of benzene to cyclohexene; (2) hydrogenation of aniline; (3) hydrogenation of diphenylamine; (4) preparation of aniline from nitrobenzene; (5) hydrogenation of chloronitrobenzenes; (6) hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture. Processes (1) and (6) are typically carried out in the water-oil system. Generally, this type of system allows reaching a higher selectivity to desired products. In the case of hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture, the water phase extracts a water soluble catalyst; which is recycled and used for condensation of aniline and nitrobenzene. Problems of reaction kinetics, as well as catalysts deactivation are here discussed. 展开更多
关键词 hydrogenation NITROAROMATICS ANILINE DICYCLOHEXYLAMINE 4-AMINODIPHENYLAMINE slurry reactors.
下载PDF
Development of CONTHAC-3D and hydrogen distribution analysis of HPR1000
18
作者 Hui Wang Jing-Jing Li +2 位作者 Yuan Chang Gong-Lin Li Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期210-221,共12页
An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be ap... An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be applied to predict gas flow,diffusion,and steam condensation in a containment during a severe hypothetical accident,as well as to obtain an estimate of the local hydrogen concentration in various zones of the containment.CONTHAC-3D was developed using multiple models to simulate the features of the proprietary systems and equipment of HPR1000 and ACP100,such as the passive cooling system,passive autocatalytic recombiners and the passive air cooling system.To validate CONTHAC-3D,a GX6 test was performed at the Battelle Model Containment facility.The hydrogen concentration and temperature monitored by the GX6 test are accurately predicted by CONTHAC-3D.Subsequently,the hydrogen distribution in the HPR1000 containment during a severe accident was studied.The results show that the hydrogen removal rates calculated using CONTHAC-3D for different types of PARs agree well with the theoretical values,with an error of less than 1%.As the accident progresses,the hydrogen concentration in the lower compartment becomes higher than that in the large space,which implies that the lower compartment has a higher hydrogen risk than the dome and large space at a later stage of the accident.The amount of hydrogen removed by the PARs placed on the floor of the compartment is small;therefore,raising the installation height of these recombiners appropriately is recommended.However,we do not recommend installing all autocatalytic recombiners at high positions.The study findings in regard to the hydrogen distribution in the HPR1000 containment indicate that CONTHAC-3D can be applied to the study of hydrogen risk containment. 展开更多
关键词 hydrogen risk mitigation Pressurized water reactor HPR1000 Thermal hydraulic CONTHAC-3D
下载PDF
Partial oxidation of simulated hot coke oven gas to syngas over Ru-Ni/Mg(Al)O catalyst in a ceramic membrane reactor 被引量:4
19
作者 Hongwei Cheng Xionggang Lu Xu Liu Yuwen Zhang Weizhong Ding 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期467-473,共7页
Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon... Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon compounds under atmospheric pressure. Under optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 13.3 ml/(cm^2·min). By reforming of the toluene and methane, the amount of H2 in the reaction effluent gas was about 2 times more than that of original H2 in simulated HCOG. The Rn-Ni/Mg(Al)O catalyst used in the membrane reactor possessed good catalytic activity and resistance to coking. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, implying that the carbon deposition formed on the catalyst might be a reversible process. 展开更多
关键词 hydrogen production coke oven gas TAR TOLUENE HYDROTALCITE mixed-conducting oxygen-permeable membrane reactor
下载PDF
Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor 被引量:4
20
作者 Bozhao Chu Nian Zhang +2 位作者 Xuli Zhai Xin Chen Yi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期593-600,共8页
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti... Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction. 展开更多
关键词 hydrogen production steam methane reforming (SMR) nickel-based catalysts MgO promoter millisecond reaction micro-channel reactor
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部