Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed bounda...Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed boundary method.The non-dimensional gap between the cylinder and the wall,G/D=0.2,0.6 and 1.0,the non-dimensional boundary layer thickness,δ/D=0.0,0.7 and 1.6,the Reynolds number,Re=350,and the aspect ratio of the cylinder,L/D=25are adopted.High-resolution visualizations of the complex vortex structures at differentδ/D and G/D are presented.The transition of the streamwise vortex mode,the combined effects ofδ/D and G/D on the flow statistics,the pressure and shear stress distribution and the hydrodynamic forces are analyzed.Results show that with decreasing G/D and increasingδ/D,the gap flow and its vortex-shedding are significantly weakened,together with an elongated wake and an enlarged low-velocity area near the wall,leading to the wake mode transition from the two-sided to one-sided vortex-shedding.Different relative positions of the cylinder regarding the boundary layer alter the flow features of the shear layers.With an increase inδ/D,the front stagnation point shifts to the upper surface,and the distance between the flow divergence point and the maximum pressure position increases.The mean drag coefficient and r.m.s.values of drag and lift coefficients decrease with a decrease in G/D and an increase inδ/D,while the mean lift coefficient increases with decreasing G/D but decreases with increasingδ/D.展开更多
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele...In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.展开更多
The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence ...The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water.展开更多
In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the micr...In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.展开更多
An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combin...An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.展开更多
基金financially supported by the National Key R&D Program of China (Grant No.2022YFB2603000)the National Natural Science Foundation of China (Grant Nos.51779172 and 52179076)。
文摘Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed boundary method.The non-dimensional gap between the cylinder and the wall,G/D=0.2,0.6 and 1.0,the non-dimensional boundary layer thickness,δ/D=0.0,0.7 and 1.6,the Reynolds number,Re=350,and the aspect ratio of the cylinder,L/D=25are adopted.High-resolution visualizations of the complex vortex structures at differentδ/D and G/D are presented.The transition of the streamwise vortex mode,the combined effects ofδ/D and G/D on the flow statistics,the pressure and shear stress distribution and the hydrodynamic forces are analyzed.Results show that with decreasing G/D and increasingδ/D,the gap flow and its vortex-shedding are significantly weakened,together with an elongated wake and an enlarged low-velocity area near the wall,leading to the wake mode transition from the two-sided to one-sided vortex-shedding.Different relative positions of the cylinder regarding the boundary layer alter the flow features of the shear layers.With an increase inδ/D,the front stagnation point shifts to the upper surface,and the distance between the flow divergence point and the maximum pressure position increases.The mean drag coefficient and r.m.s.values of drag and lift coefficients decrease with a decrease in G/D and an increase inδ/D,while the mean lift coefficient increases with decreasing G/D but decreases with increasingδ/D.
基金supported by the National Natural Science Foundation of China (Project 41730212)the Basic Research Project of the Institute of Earthquake Forecasting, China Earthquake Administration (2017IES0102)
文摘In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.
文摘The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water.
基金the National Key Basic Research Program of China("973 Program",No.2012CB625100)the National Natural Science Foundation of China(No.51001106&No.51301181)the Doctoral Starting up Foundation of Liaoning Province Science and Technology Agency,China(No.20131118)
文摘In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.
基金supported by the National Key R&D Program of China (No. 2016YFC0302301)the National Natural Science Foundation of China (No. 51479183)
文摘An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.