Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3...Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.展开更多
Through analysis of microscopic characteristics,mineral components,elements and isotopes,the genetic mechanism of carbonates in the deep lacustrine source rocks in the upper submember of Member 4 and lower submember o...Through analysis of microscopic characteristics,mineral components,elements and isotopes,the genetic mechanism of carbonates in the deep lacustrine source rocks in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation in Dongying sag,is well investigated.The results show that four types of carbonates in the deep lake,i.e.,lenticular coarse crystalline carbonate,lamellar micro-fine crystalline carbonate,lamellar cryptocrystalline carbonate and massive cryptocrystalline carbonate.Of which,the lenticular coarse crystalline carbonate is formed by diagenetic recrystallization.For the lamellar micro-fine crystalline carbonate and the lamellar cryptocrystalline carbonate,through the alga photosynthesis,the carbon dioxide(CO_(2))is constantly extracted from water,thus the concentration of CO_(3)^(-2) ion in water increases,and then the CO_(3)^(-2) ion reacts with Ca2+ ion in lake water surface to form the carbonates;the saline water environment is favorable for preservation of carbonate particles which mostly occur in lamellar micro-fine crystalline;in the brackish water environment,the water is deep,and the carbonate crystalline beneath the carbonate compensation depth surface is usually is dissolved,and most of lamellar cryptocrystalline are preserved.The massive cryptocrystalline carbonate is formed by the sedimentary carbonate which transport from shallow water to deep water by gravity flow.To some extent,the carbonates control reservoir property and compressibility of muddy shale in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation in Dongying sag,and provide important information for reconstruction of sedimentary environment of the ancient lake.展开更多
In the continental lake basin whose structures were extraordinarily active, tectonism is an important factor in controlling the sequence and the depositional filling of the basin. This article reports the assemble pat...In the continental lake basin whose structures were extraordinarily active, tectonism is an important factor in controlling the sequence and the depositional filling of the basin. This article reports the assemble patterns of syndepositional fault in the third member of Shahejie (沙河街) Formation in Beitang (北塘) sag. The results show that the comb-shape fracture system and the fracture transformation zone were developed in Beitang sag. These assemble patterns obviously controlled the sand-body and spatial distribution of sedimentary system. However, the steep slope belt of fault terrace, the multistage slope belt and the low uplift gentle slope belt controlled the development of sequence styles. Analyses of the spatial-temporal relationship of the assemble pattern of syndepositional faults and the sedimentary system help predict the favorable exploration zone.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
The glutenite in the fourth member of Shahejie Formation(Es^4) in northern Dongying depression straightforwardly penetrated into the muddy bathyal -abyss facies.The conditions of reservoir is very superior:(1) the hig...The glutenite in the fourth member of Shahejie Formation(Es^4) in northern Dongying depression straightforwardly penetrated into the muddy bathyal -abyss facies.The conditions of reservoir is very superior:(1) the high quality thick bedded oil source rock is developed very well in the Lijin sag and Minfeng sag of the study area,and it has the higher capability of generating hydrocarbon;(2) the展开更多
The Boxing Sag is located in the southwest of Dongying Depression, southern Bohai Bay Basin of East China. It is one of the main petroliferous sags in the Dongying Depression, and has two major source rocks, namely th...The Boxing Sag is located in the southwest of Dongying Depression, southern Bohai Bay Basin of East China. It is one of the main petroliferous sags in the Dongying Depression, and has two major source rocks, namely the upper 4th Member (Es4u) and lower 3rd Member (Es31) shales of Eocene Shahejie Formation, which are the new exploration targets in recent years. In this study, 16 core samples were collected from Es4u and Es31 shales in the Boxing Sag, and the saturate hydrocarbons were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. The results show that Es4u shale has obvious phytane and gammacerane predominance, higher concentration of tricyclic terpanes and regular steranes, and very low concentration of 4- methly steranes; Es31 shale has pristane predominance, lower concentration of tricyclic terpanes, gammacerane and regular steranes, and higher concentration of 4-methly steranes. The Es4u shale can be further divided into two types based on the distribution of n-alkanes in gas chromatograms: normal distribution and double peak pattern. The biomarker characteristics and sedimentary facies distribution show that Es4u shale was deposited in the saline-hypersaline semi-deep (Type A Es4u shale, sag center) to shallow (Type B Es4u shale, sag edge) lacustrine environments, Es31 shale was deposited in the freshwater-brackish semi-deep-deep lacustrine environments, and the former sedimentary facies maps of Es4u and Es31 in the Boxing Sag are further modified.展开更多
Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Sha...Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.展开更多
基金Supported by the National Natural Science Foundation of China (41872113,42172109,42202170)CNPC–China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project (ZLZX2020-02)。
文摘Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.
基金The work was supported by the National Key Basic Research Program of China(973 Program)(2014CB239100).
文摘Through analysis of microscopic characteristics,mineral components,elements and isotopes,the genetic mechanism of carbonates in the deep lacustrine source rocks in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation in Dongying sag,is well investigated.The results show that four types of carbonates in the deep lake,i.e.,lenticular coarse crystalline carbonate,lamellar micro-fine crystalline carbonate,lamellar cryptocrystalline carbonate and massive cryptocrystalline carbonate.Of which,the lenticular coarse crystalline carbonate is formed by diagenetic recrystallization.For the lamellar micro-fine crystalline carbonate and the lamellar cryptocrystalline carbonate,through the alga photosynthesis,the carbon dioxide(CO_(2))is constantly extracted from water,thus the concentration of CO_(3)^(-2) ion in water increases,and then the CO_(3)^(-2) ion reacts with Ca2+ ion in lake water surface to form the carbonates;the saline water environment is favorable for preservation of carbonate particles which mostly occur in lamellar micro-fine crystalline;in the brackish water environment,the water is deep,and the carbonate crystalline beneath the carbonate compensation depth surface is usually is dissolved,and most of lamellar cryptocrystalline are preserved.The massive cryptocrystalline carbonate is formed by the sedimentary carbonate which transport from shallow water to deep water by gravity flow.To some extent,the carbonates control reservoir property and compressibility of muddy shale in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation in Dongying sag,and provide important information for reconstruction of sedimentary environment of the ancient lake.
基金supported by the Research Institute of Explora-tion and Development,Petro China Dagang Oilfield Company,the National Natural Science Foundation of China (No. 40872077)the Open Research Program of State Key Labora-tory of Geological Processes and Mineral Resources,China University of Geosciences (No.GPMR200913)the Foun-dation of Key Laboratory of Tectonics and Petroleum Re-sources of Ministry of Education,China University of Geo-sciences (No.TPR-2009-19)
文摘In the continental lake basin whose structures were extraordinarily active, tectonism is an important factor in controlling the sequence and the depositional filling of the basin. This article reports the assemble patterns of syndepositional fault in the third member of Shahejie (沙河街) Formation in Beitang (北塘) sag. The results show that the comb-shape fracture system and the fracture transformation zone were developed in Beitang sag. These assemble patterns obviously controlled the sand-body and spatial distribution of sedimentary system. However, the steep slope belt of fault terrace, the multistage slope belt and the low uplift gentle slope belt controlled the development of sequence styles. Analyses of the spatial-temporal relationship of the assemble pattern of syndepositional faults and the sedimentary system help predict the favorable exploration zone.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
文摘The glutenite in the fourth member of Shahejie Formation(Es^4) in northern Dongying depression straightforwardly penetrated into the muddy bathyal -abyss facies.The conditions of reservoir is very superior:(1) the high quality thick bedded oil source rock is developed very well in the Lijin sag and Minfeng sag of the study area,and it has the higher capability of generating hydrocarbon;(2) the
基金financially supported by the Research Institute of Geological Science of Shengli Oilfield Company Limited and by the State Key Laboratory of Petroleum Resources and Prospecting (No. prp2009-02)
文摘The Boxing Sag is located in the southwest of Dongying Depression, southern Bohai Bay Basin of East China. It is one of the main petroliferous sags in the Dongying Depression, and has two major source rocks, namely the upper 4th Member (Es4u) and lower 3rd Member (Es31) shales of Eocene Shahejie Formation, which are the new exploration targets in recent years. In this study, 16 core samples were collected from Es4u and Es31 shales in the Boxing Sag, and the saturate hydrocarbons were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. The results show that Es4u shale has obvious phytane and gammacerane predominance, higher concentration of tricyclic terpanes and regular steranes, and very low concentration of 4- methly steranes; Es31 shale has pristane predominance, lower concentration of tricyclic terpanes, gammacerane and regular steranes, and higher concentration of 4-methly steranes. The Es4u shale can be further divided into two types based on the distribution of n-alkanes in gas chromatograms: normal distribution and double peak pattern. The biomarker characteristics and sedimentary facies distribution show that Es4u shale was deposited in the saline-hypersaline semi-deep (Type A Es4u shale, sag center) to shallow (Type B Es4u shale, sag edge) lacustrine environments, Es31 shale was deposited in the freshwater-brackish semi-deep-deep lacustrine environments, and the former sedimentary facies maps of Es4u and Es31 in the Boxing Sag are further modified.
基金supported by the National Science and Technology Special Grant of China (No. 2017zx05036-004)
文摘Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.