Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
An iterative method is developed for solving the solution of the general restricted linear equation. The convergence, stability, and error estimate are given. Numerical experiments are presented to demonstrate the eff...An iterative method is developed for solving the solution of the general restricted linear equation. The convergence, stability, and error estimate are given. Numerical experiments are presented to demonstrate the efficiency and accuracy.展开更多
Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at...Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.展开更多
In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the appr...In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the approached root. Next we present a second order, two-step method for iteratively nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two- step method, not requiring beforehand knowledge of the multiplicity index m of the sought root, nor requiring higher order derivatives of the equilibrium function, which is quadratically convergent for any , and then reverts to superlinear.展开更多
Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared ...Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.展开更多
For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two ti...For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented.The non-equilibrium radiation diffusion problems with flux limiter are considered,which appends pesky complexity and nonlinearity to the diffusion coef-ficient.Numerical results are presented to demonstrate that compared with Picard method,for a desired accuracy,significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.展开更多
This paper proposes a novel iterative algorithm for optimal design of non-frequency-selective Finite Impulse Response(FIR) digital filters based on the windowing method.Different from the traditional optimization conc...This paper proposes a novel iterative algorithm for optimal design of non-frequency-selective Finite Impulse Response(FIR) digital filters based on the windowing method.Different from the traditional optimization concept of adjusting the window or the filter order in the windowing design of an FIR digital filter,the key idea of the algorithm is minimizing the approximation error by succes-sively modifying the design result through an iterative procedure under the condition of a fixed window length.In the iterative procedure,the known deviation of the designed frequency response in each iteration from the ideal frequency response is used as a reference for the next iteration.Because the approximation error can be specified variably,the algorithm is applicable for the design of FIR digital filters with different technical requirements in the frequency domain.A design example is employed to illustrate the efficiency of the algorithm.展开更多
In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper imp...In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper improve and extend current results in the more general setting.展开更多
A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for...A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite with interfacial layer is derived from the Castigliano's theorem and interface shear-lag model. A numerical result of the COD equation is obtained using the iteration solution of the second Fredholm integral equation. In order to investigate the effect of various parameters on the toughening, an approximate analytical solution of the equation is present and its error analysis is performed, which demonstrates the approximate solution to be appropriate. A parametric study of the influence of the crack length, interfacial shear modules, thickness of the interphase, fiber radius, fiber volume fraction and properties of materials on composite toughening is therefore carried out. The results are useful for experimental demonstration and toughening design including the fabrication process of the composite.展开更多
This paper introduces the basic principle of stripe reflection method and proposes an improved algorithm on the traditional Southwell gradient iterative integration algorithm. The algorithm adds a coefficient value wi...This paper introduces the basic principle of stripe reflection method and proposes an improved algorithm on the traditional Southwell gradient iterative integration algorithm. The algorithm adds a coefficient value with an attenuation factor to the compensation height value and the value of the attenuation factor is changed by the determination of the compensation height threshold. Through computer simulation, the fitting error of the reconstructed surface show that the RMS of the new method is one order of magnitude better than the traditional algorithm and the PV value of the high frequency part is about 1/15 of the traditional algorithm. It is proved that the improved algorithm can effectively improve the convergence and noise resistance of the iterative algorithm.展开更多
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul...In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.展开更多
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘An iterative method is developed for solving the solution of the general restricted linear equation. The convergence, stability, and error estimate are given. Numerical experiments are presented to demonstrate the efficiency and accuracy.
基金supported by the key project of the National Natural Science Foundation of China (No. 61431001)Huawei Innovation Research Program, the 5G research program of China Mobile Research Institute (Grant No. [2015] 0615)+2 种基金the open research fund of National Mobile Communications Research Laboratory Southeast University (No.2017D02)Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, and Keysight
文摘Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.
文摘In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the approached root. Next we present a second order, two-step method for iteratively nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two- step method, not requiring beforehand knowledge of the multiplicity index m of the sought root, nor requiring higher order derivatives of the equilibrium function, which is quadratically convergent for any , and then reverts to superlinear.
基金supported by NSFC (11071039,11161130002)Natural Science Foundation of Jiangsu Province (BK2011584)
文摘Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.
基金supported by the Basic Research Project of National Defence(B1520110011)the Foundation of CAEP(2010A0202010),the Foundation of National Key Laboratory of Science and Technology on Computational Physics。
文摘For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented.The non-equilibrium radiation diffusion problems with flux limiter are considered,which appends pesky complexity and nonlinearity to the diffusion coef-ficient.Numerical results are presented to demonstrate that compared with Picard method,for a desired accuracy,significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.
基金the National Grand Fundamental Research 973 Program of China (No.2004CB318109)the National High-Technology Research and Development Plan of China (No.2006AA01Z452)
文摘This paper proposes a novel iterative algorithm for optimal design of non-frequency-selective Finite Impulse Response(FIR) digital filters based on the windowing method.Different from the traditional optimization concept of adjusting the window or the filter order in the windowing design of an FIR digital filter,the key idea of the algorithm is minimizing the approximation error by succes-sively modifying the design result through an iterative procedure under the condition of a fixed window length.In the iterative procedure,the known deviation of the designed frequency response in each iteration from the ideal frequency response is used as a reference for the next iteration.Because the approximation error can be specified variably,the algorithm is applicable for the design of FIR digital filters with different technical requirements in the frequency domain.A design example is employed to illustrate the efficiency of the algorithm.
文摘In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper improve and extend current results in the more general setting.
基金National Natural Science Foundatjon and China Postdoctoral Scjence Fbundation
文摘A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite with interfacial layer is derived from the Castigliano's theorem and interface shear-lag model. A numerical result of the COD equation is obtained using the iteration solution of the second Fredholm integral equation. In order to investigate the effect of various parameters on the toughening, an approximate analytical solution of the equation is present and its error analysis is performed, which demonstrates the approximate solution to be appropriate. A parametric study of the influence of the crack length, interfacial shear modules, thickness of the interphase, fiber radius, fiber volume fraction and properties of materials on composite toughening is therefore carried out. The results are useful for experimental demonstration and toughening design including the fabrication process of the composite.
文摘This paper introduces the basic principle of stripe reflection method and proposes an improved algorithm on the traditional Southwell gradient iterative integration algorithm. The algorithm adds a coefficient value with an attenuation factor to the compensation height value and the value of the attenuation factor is changed by the determination of the compensation height threshold. Through computer simulation, the fitting error of the reconstructed surface show that the RMS of the new method is one order of magnitude better than the traditional algorithm and the PV value of the high frequency part is about 1/15 of the traditional algorithm. It is proved that the improved algorithm can effectively improve the convergence and noise resistance of the iterative algorithm.
文摘In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.