Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November...Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.展开更多
The treatment of soft soil foundation under nuclear safety grade corridors with graded sand and gravel materials has a good development prospect.It is of great engineering value to explore the influence of constructio...The treatment of soft soil foundation under nuclear safety grade corridors with graded sand and gravel materials has a good development prospect.It is of great engineering value to explore the influence of construction parameters of graded sand and gravel foundation on the seismic response of gallery structures.Taking the safety grade underground corridor of a nuclear power plant as the engineering background,the equivalent linear method is used to consider the nonlinear dynamic characteristics of graded sand and gravel.The energy transfer boundary is applied at the truncation boundary to simulate the dissipation effect of scattered wave fluctuation energy and the ground motion input.The thicknessless contact element is introduced to consider the contact effect between the corridor structure and the graded sand and gravel foundation,so as to establish the calculation model of the dynamic interaction between the graded sand and gravel foundation and the corridor structure.Furthermore,the influence of the relative compactness and the foundation treatment depth on the seismic response of the corridor structure is studied,and the calculation results of the acceleration response spectrum and relative displacement of the corridor structure are analyzed.The calculation results show that the two construction parameters have different degrees of influence on the seismic response of corridor structure.The research results can provide reference for the engineering design and construction of underground corridors,and provide technical support for the application of graded gravel materials in soft soil foundation treatment.展开更多
The underground nuclear power plant(NPP)makes full use of land resources, reduces costs, makes better use of its passive safety, and avoids radioactivity release into the atmosphere in serious nuclear accidents.In thi...The underground nuclear power plant(NPP)makes full use of land resources, reduces costs, makes better use of its passive safety, and avoids radioactivity release into the atmosphere in serious nuclear accidents.In this paper, for obtaining comprehensive and integrated analyses on this new NPP design, we introduce four kinds of underground NPP designs, analyze the feasibility of each design from various aspects, and use the multiple criteria decision analysis method to choose the best option.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
文摘Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.
基金supported by the National Basic Research Program of China (973 Program, No. 2013CB035904)the Innovative Research Groups of the National Natural Science Foundation of China (No. 51321065)the National Natural Science Foundation of China (No. 51439005)
基金supported by National Natural Science Foundation of China(52108437)Dalian Youth Science and Technology Star Project(2020RQ057)。
文摘The treatment of soft soil foundation under nuclear safety grade corridors with graded sand and gravel materials has a good development prospect.It is of great engineering value to explore the influence of construction parameters of graded sand and gravel foundation on the seismic response of gallery structures.Taking the safety grade underground corridor of a nuclear power plant as the engineering background,the equivalent linear method is used to consider the nonlinear dynamic characteristics of graded sand and gravel.The energy transfer boundary is applied at the truncation boundary to simulate the dissipation effect of scattered wave fluctuation energy and the ground motion input.The thicknessless contact element is introduced to consider the contact effect between the corridor structure and the graded sand and gravel foundation,so as to establish the calculation model of the dynamic interaction between the graded sand and gravel foundation and the corridor structure.Furthermore,the influence of the relative compactness and the foundation treatment depth on the seismic response of the corridor structure is studied,and the calculation results of the acceleration response spectrum and relative displacement of the corridor structure are analyzed.The calculation results show that the two construction parameters have different degrees of influence on the seismic response of corridor structure.The research results can provide reference for the engineering design and construction of underground corridors,and provide technical support for the application of graded gravel materials in soft soil foundation treatment.
基金supported by the National Natural Science Foundation of China(Nos.91326108 and 51206042)
文摘The underground nuclear power plant(NPP)makes full use of land resources, reduces costs, makes better use of its passive safety, and avoids radioactivity release into the atmosphere in serious nuclear accidents.In this paper, for obtaining comprehensive and integrated analyses on this new NPP design, we introduce four kinds of underground NPP designs, analyze the feasibility of each design from various aspects, and use the multiple criteria decision analysis method to choose the best option.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.