The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The cal...The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.展开更多
In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also...In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.展开更多
We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that th...We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.展开更多
The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum...The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum, we make a priori estimate in a bound ball and prove the existence and uniqueness of the local strong solution of the Boussinesq equation.展开更多
In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimension...In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimensional Cauchy problem established that the initial density and the initial temperature decay not extremely slow. Particularly, it is allowed to be arbitrarily large for the initial data and vacuum states for the initial density, even including the compact support. Moreover, when the density depends on the Korteweg term with the viscosity coefficient and capillary coefficient, we obtain a consistent priority estimate by the energy method, and extend the local strong solutions to the global strong solutions. Finally, when the pressure and external force are not affected, we deform the fluid models of Korteweg type, we can obtain the large time decay rates of the gradients of velocity, temperature and pressure.展开更多
In this paper,we study the zero viscosity-diffusivity limit for the incompressible Boussinesq equations in a periodic domain in the framework of Gevrey class.We first prove that there exists an interval of time,indepe...In this paper,we study the zero viscosity-diffusivity limit for the incompressible Boussinesq equations in a periodic domain in the framework of Gevrey class.We first prove that there exists an interval of time,independent of the viscosity coefficient and the diffusivity coefficient,for the solutions to the viscous incompressible Boussinesq equations.Then,based on these uniform estimates,we show that the solutions of the viscous incompressible Boussinesq equations converge to that of the ideal incompressible Boussinesq equations as the viscosity and diffusivity coefficients go to zero.Moreover,the convergence rate is alsogiven.展开更多
Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, severa...Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.展开更多
This paper investigates unsteady incompressible flow over cavities. Previous research in incompressible cavity-flow has included flow inside and past a 2-dimensional cavity, and flow inside a 3-dimensional cavity, dri...This paper investigates unsteady incompressible flow over cavities. Previous research in incompressible cavity-flow has included flow inside and past a 2-dimensional cavity, and flow inside a 3-dimensional cavity, driven by a moving lid. The present research is focused on incompressible flow past a 3-dimensional open shallow cavity. This involves the complex interaction between the external flow and the re-circulating flow within the cavity. In particular, computation was performed on a 3-dimensional shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000, respectively. A CFD approach, based on the unsteady Navier-Stokes equations for 3-dimensional incompressible flow, was used in the study. Typical results of the computation are presented. These results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.展开更多
主要讨论当扩散系数κ=0时,三维不可压Boussinesq方程光滑解的对数型正则性准则,采用能量估计的方法证明了如果速度满足integral from 0 to T ‖▽×u‖_(BMO)/( ln(e+‖▽×u‖_(BMO)))^(1/2)dt<∞,则光滑解(u,θ)在(0,T)...主要讨论当扩散系数κ=0时,三维不可压Boussinesq方程光滑解的对数型正则性准则,采用能量估计的方法证明了如果速度满足integral from 0 to T ‖▽×u‖_(BMO)/( ln(e+‖▽×u‖_(BMO)))^(1/2)dt<∞,则光滑解(u,θ)在(0,T)可以延拓到t=T.展开更多
In this present paper, we investigate the Cauchy problem for 3D incom- pressible Boussinesq equations and establish the Beale-Kato-Majda regularity criterion of smooth solutions in terms of the velocity field in the h...In this present paper, we investigate the Cauchy problem for 3D incom- pressible Boussinesq equations and establish the Beale-Kato-Majda regularity criterion of smooth solutions in terms of the velocity field in the homogeneous BMO space.展开更多
We prove two new regularity criteria for the 3D incompressible Navier-Stokes equations in a bounded domain. Our results also hold for the 3D Boussinesq system with zero heat conductivity.
This paper presents a parallel Newton-Krylov-Schwarz method for the numerical simulation of unsteady flows at high Reynolds number around a high-speed train under crosswind.With a realistic train geometry,a realistic ...This paper presents a parallel Newton-Krylov-Schwarz method for the numerical simulation of unsteady flows at high Reynolds number around a high-speed train under crosswind.With a realistic train geometry,a realistic Reynolds number,and a realistic wind speed,this is a very challenging computational problem.Because of the limited parallel scalability,commercial CFD software is not suitable for supercomputers with a large number of processors.We develop a Newton-KrylovSchwarz based fully implicit method,and the corresponding parallel software,for the 3D unsteady incompressible Navier-Stokes equations discretized with a stabilized finite element method on very fine unstructured meshes.We test the algorithm and software for flows passing a train modeled after China’s high-speed train CRH380B,and we also compare our results with results obtained from commercial CFD software.Our algorithm shows very good parallel scalability on a supercomputer with over one thousand processors.展开更多
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 10452840301004616 and S2011040000403)the National Natural Science Foundation of China (Grant No. 41176005)the Science and Technology Project Foundation of Zhongshan, China (Grnat No. 20123A326)
文摘The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
基金supported by the National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.
文摘We dedicate to the 2D density-dependent nonhomogeneous incompressible Boussinesq equations with vacuum on . At infinity, if the attenuation of initial density and temperature is not very slow. And it is gained that there is a global strong solution and is unique for the 2D Cauchy problem with the initial density which can allow vacuum conditions and even have compact support. Besides, the large time decay rates of the gradients of velocity, temperature and pressure can also be obtained which are also the same as those of the homogeneous case.
文摘The main goal of the paper is to obtain the local strong solution of the Cauchy problem of the nonhomogeneous incompressible Boussinesq equation in two-dimension space. Especially, when the far-field density is vacuum, we make a priori estimate in a bound ball and prove the existence and uniqueness of the local strong solution of the Boussinesq equation.
文摘In this paper, we study the Cauchy problem of the density-dependent Boussinesq equations of Korteweg type on the whole space with a vacuum. It is proved that there exists a unique strong solution for the two-dimensional Cauchy problem established that the initial density and the initial temperature decay not extremely slow. Particularly, it is allowed to be arbitrarily large for the initial data and vacuum states for the initial density, even including the compact support. Moreover, when the density depends on the Korteweg term with the viscosity coefficient and capillary coefficient, we obtain a consistent priority estimate by the energy method, and extend the local strong solutions to the global strong solutions. Finally, when the pressure and external force are not affected, we deform the fluid models of Korteweg type, we can obtain the large time decay rates of the gradients of velocity, temperature and pressure.
文摘In this paper,we study the zero viscosity-diffusivity limit for the incompressible Boussinesq equations in a periodic domain in the framework of Gevrey class.We first prove that there exists an interval of time,independent of the viscosity coefficient and the diffusivity coefficient,for the solutions to the viscous incompressible Boussinesq equations.Then,based on these uniform estimates,we show that the solutions of the viscous incompressible Boussinesq equations converge to that of the ideal incompressible Boussinesq equations as the viscosity and diffusivity coefficients go to zero.Moreover,the convergence rate is alsogiven.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11305031 and 11305106Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No.Yq2013205
文摘Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.
文摘This paper investigates unsteady incompressible flow over cavities. Previous research in incompressible cavity-flow has included flow inside and past a 2-dimensional cavity, and flow inside a 3-dimensional cavity, driven by a moving lid. The present research is focused on incompressible flow past a 3-dimensional open shallow cavity. This involves the complex interaction between the external flow and the re-circulating flow within the cavity. In particular, computation was performed on a 3-dimensional shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000, respectively. A CFD approach, based on the unsteady Navier-Stokes equations for 3-dimensional incompressible flow, was used in the study. Typical results of the computation are presented. These results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.
文摘主要讨论当扩散系数κ=0时,三维不可压Boussinesq方程光滑解的对数型正则性准则,采用能量估计的方法证明了如果速度满足integral from 0 to T ‖▽×u‖_(BMO)/( ln(e+‖▽×u‖_(BMO)))^(1/2)dt<∞,则光滑解(u,θ)在(0,T)可以延拓到t=T.
文摘In this present paper, we investigate the Cauchy problem for 3D incom- pressible Boussinesq equations and establish the Beale-Kato-Majda regularity criterion of smooth solutions in terms of the velocity field in the homogeneous BMO space.
基金Acknowledgements Fan was supported by the National Natural Science Foundation of China (Grant No. 11171154) Li was supported by the National Natural Science Foundation of China (Grant Nos. 11271184, 11671193) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘We prove two new regularity criteria for the 3D incompressible Navier-Stokes equations in a bounded domain. Our results also hold for the 3D Boussinesq system with zero heat conductivity.
基金supported in part by the Knowledge Innovation Program of the Chinese Academy of Sciences under KJCX2-EW-L01the International Cooperation Project of Guangdong province under 2011B050400037.
文摘This paper presents a parallel Newton-Krylov-Schwarz method for the numerical simulation of unsteady flows at high Reynolds number around a high-speed train under crosswind.With a realistic train geometry,a realistic Reynolds number,and a realistic wind speed,this is a very challenging computational problem.Because of the limited parallel scalability,commercial CFD software is not suitable for supercomputers with a large number of processors.We develop a Newton-KrylovSchwarz based fully implicit method,and the corresponding parallel software,for the 3D unsteady incompressible Navier-Stokes equations discretized with a stabilized finite element method on very fine unstructured meshes.We test the algorithm and software for flows passing a train modeled after China’s high-speed train CRH380B,and we also compare our results with results obtained from commercial CFD software.Our algorithm shows very good parallel scalability on a supercomputer with over one thousand processors.