The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in wh...The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch.展开更多
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod...In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.展开更多
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c...The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.展开更多
Plain concrete is regarded as a two-phase material comprising randomly distributed aggregates and mortar matrix. A series of three-point bending concrete beams with symmetric or asymmetric double notches are modeled u...Plain concrete is regarded as a two-phase material comprising randomly distributed aggregates and mortar matrix. A series of three-point bending concrete beams with symmetric or asymmetric double notches are modeled using the modified random aggregate generation and packing algorithm. The cohesive zone model is used as the fracture criterion and the cohesive el- ements are inserted into both the mortar matrix and the aggregate-mortar interfaces as potential micro-cracking zones. The dead and alive crack phenomena are studied experimentally and nu- merically; and the influences of notch location, aggregate distribution and gradation on fracture are numerically evaluated. Some important conclusions are given.展开更多
基金Supported by the National Natural Science Foundation of China(5137520151775227)。
文摘The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch.
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402)as well as from the National Natural Science Foundation of China(Grant No.51879257).
文摘In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.
文摘The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.
基金Project supported by the National Basic Research Program of China(973 Program:No.2011CB013800)Hubei Provincial Natural Science Foundation of China(No.2015CFB205)
文摘Plain concrete is regarded as a two-phase material comprising randomly distributed aggregates and mortar matrix. A series of three-point bending concrete beams with symmetric or asymmetric double notches are modeled using the modified random aggregate generation and packing algorithm. The cohesive zone model is used as the fracture criterion and the cohesive el- ements are inserted into both the mortar matrix and the aggregate-mortar interfaces as potential micro-cracking zones. The dead and alive crack phenomena are studied experimentally and nu- merically; and the influences of notch location, aggregate distribution and gradation on fracture are numerically evaluated. Some important conclusions are given.